Skip to main content

Advertisement

Log in

Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Upregulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is associated with the development of myocardial infarction (MI), dilated cardiomyopathy, cardiac fibrosis, and heart failure (HF). Evidences suggest that lipopolysaccharide (LPS) participates in the inflammatory response in the cardiovascular system; however, it is unknown if LPS is sufficient to upregulate expressions and/or activity of uPA, tPA, MMP-2, and MMP-9 in myocardial cells. In this study, we treated H9c2 cardiomyoblasts with LPS to explore whether LPS upregulates uPA, tPA, MMP-2, and MMP-9, and further to identify the precise molecular and cellular mechanisms behind this upregulatory responses. Here, we show that LPS challenge increased the protein levels of uPA, MMP-2 and MMP-9, and induced the activity of MMP-2 and MMP-9 in H9c2 cardiomyoblasts. However, LPS showed no effects on the expression of tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor), and QNZ (NFκB inhibitor), the LPS-upregulated expression and/or activity of uPA, MMP-2, and MMP-9 in H9c2 cardiomyoblasts are markedly inhibited only by ERK1/2 inhibitors, U0126. Collectively, these results suggest that LPS upregulates the expression and/or activity of uPA, MMP-2, and MMP-9 through ERK1/2 signaling pathway in H9c2 cardiomyoblasts. Our findings further provide a link between the LPS-induced cardiac dysfunction and the ERK1/2 signaling pathway that mediates the upregulation of uPA, MMP-2 and MMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysacchride

TLR:

Toll-like receptor

ERK:

Extracellular signal regulated kinase

p38 MAPK:

p38 Mitogen-activated protein kinase

JNK:

c-Jun N-terminal kinase

NF-κB:

Nuclear factor κ B

uPA:

Urokinase plasminogen activator

tPA:

Tissue plasminogen activator

MMP:

Matrix metallopeptidase

TIMP:

Tissue inhibitor of metalloproteinases

CsA:

Cyclosporine A

DMEM:

Dulbecco’s modified Eagle’s medium

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PBS:

Phosphate-buffered saline

QNZ:

6-Amino-4-(4-phenoxyphenylethylamino) quinazoline

ECM:

Extracellular matrix

References

  1. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. doi:10.1126/science.1067100

    Article  PubMed  CAS  Google Scholar 

  2. Ellerbroek SM, Stack MS (1999) Membrane associated matrix metalloproteinases in metastasis. Bioessays 21:940–949 doi:10.1002/(SICI)1521-1878(199911)21:11<940::AID-BIES6>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  3. Peterson JT, Li H, Dillon L et al (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46:307–315. doi:10.1016/S0008-6363(00)00029-8

    Article  PubMed  CAS  Google Scholar 

  4. Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142. doi:10.1038/13459

    Article  PubMed  CAS  Google Scholar 

  5. Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62. doi:10.1172/JCI8768

    Article  PubMed  CAS  Google Scholar 

  6. Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235

    PubMed  CAS  Google Scholar 

  7. Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46:214–224. doi:10.1016/S0008-6363(00)00003-1

    Article  PubMed  CAS  Google Scholar 

  8. Creemers E, Cleutjens J, Smits J et al (2000) Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 156:1865–1873

    PubMed  CAS  Google Scholar 

  9. Heymans S, Lupu F, Terclavers S et al (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25

    PubMed  CAS  Google Scholar 

  10. Bishopric NH, Andreka P, Slepak T et al (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150. doi:10.1016/S1471-4892(01)00032-7

    Article  PubMed  CAS  Google Scholar 

  11. Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352

    PubMed  CAS  Google Scholar 

  12. Zhu W, Zou Y, Aikawa R et al (1999) MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100:2100–2107

    PubMed  CAS  Google Scholar 

  13. Dhingra S, Sharma AK, Singla DK et al (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H3524–H3531. doi:10.1152/ajpheart.00919.2007

    Article  PubMed  CAS  Google Scholar 

  14. Wang M, Sankula R, Tsai BM et al (2004) P38 MAPK mediates myocardial proinflammatory cytokine production and endotoxin-induced contractile suppression. Shock 21:170–174. doi:10.1097/01.shk.0000110623.20647.aa

    Article  PubMed  CAS  Google Scholar 

  15. Meldrum DR, Dinarello CA, Cleveland JC et al (1998) Hydrogen peroxide induces tumor necrosis factor alpha-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent mechanism. Surgery 124:291–296 (discussion 297)

    PubMed  CAS  Google Scholar 

  16. Dougherty CJ, Kubasiak LA, Prentice H et al (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571. doi:10.1042/0264-6021:3620561

    Article  PubMed  CAS  Google Scholar 

  17. Minamino T, Yujiri T, Terada N et al (2002) MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proc Natl Acad Sci USA 99:3866–3871. doi:10.1073/pnas.062453699

    Article  PubMed  CAS  Google Scholar 

  18. Boyd JH, Mathur S, Wang Y et al (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. doi:10.1016/j.cardiores.2006.09.011

    Article  PubMed  CAS  Google Scholar 

  19. Wilkins BJ, Molkentin JD (2002) Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol 541:1–8. doi:10.1113/jphysiol.2002.017129

    Article  PubMed  CAS  Google Scholar 

  20. Lakshmikuttyamma A, Selvakumar P, Kakkar R et al (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90:987–997. doi:10.1002/jcb.10722

    Article  PubMed  CAS  Google Scholar 

  21. Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228. doi:10.1016/S0092-8674(00)81573-1

    Article  PubMed  CAS  Google Scholar 

  22. Yang RB, Mark MR, Gray A et al (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288. doi:10.1038/26239

    Article  PubMed  CAS  Google Scholar 

  23. Stoll LL, Denning GM, Weintraub NL (2004) Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol 24:2227–2236. doi:10.1161/01.ATV.0000147534.69062.dc

    Article  PubMed  CAS  Google Scholar 

  24. Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842. doi:10.1016/S0140-6736(98)09286-1

    Article  PubMed  CAS  Google Scholar 

  25. Jardin F, Brun-Ney D, Auvert B et al (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–1060. doi:10.1097/00003246-199010000-00001

    Article  PubMed  CAS  Google Scholar 

  26. Packer M (1995) Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 92:1379–1382

    PubMed  CAS  Google Scholar 

  27. Yasuda S, Lew WY (1997) Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ Res 81:1011–1020

    PubMed  CAS  Google Scholar 

  28. Mann DL, Spinale FG (1998) Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98:1699–1702

    PubMed  CAS  Google Scholar 

  29. Gunja-Smith Z, Morales AR, Romanelli R et al (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148:1639–1648

    PubMed  CAS  Google Scholar 

  30. Tyagi SC (1997) Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem 168:1–12. doi:10.1023/A:1006850903242

    Article  PubMed  CAS  Google Scholar 

  31. Tyagi SC, Kumar SG, Alla SR et al (1996) Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J Cell Physiol 167:137–147 doi:10.1002/(SICI)1097-4652(199604)167:1<137::AID-JCP16>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Simon H, Bocan TM et al (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306. doi:10.1016/S0008-6363(00)00028-6

    Article  PubMed  CAS  Google Scholar 

  33. Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751. doi:10.1073/pnas.97.23.12746

    Article  PubMed  CAS  Google Scholar 

  34. Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635

    PubMed  CAS  Google Scholar 

  35. Goldberg GI, Marmer BL, Grant GA et al (1989) Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 86:8207–8211. doi:10.1073/pnas.86.21.8207

    Article  PubMed  CAS  Google Scholar 

  36. Roten L, Nemoto S, Simsic J et al (2000) Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol 32:109–120. doi:10.1006/jmcc.1999.1052

    Article  PubMed  CAS  Google Scholar 

  37. Creemers EE, Davis JN, Parkhurst AM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371

    PubMed  CAS  Google Scholar 

  38. Mukherjee R, Parkhurst AM, Mingoia JT et al (2004) Myocardial remodeling after discrete radiofrequency injury: effects of tissue inhibitor of matrix metalloproteinase-1 gene deletion. Am J Physiol Heart Circ Physiol 286:H1242–H1247. doi:10.1152/ajpheart.00437.2003

    Article  PubMed  CAS  Google Scholar 

  39. Fedak PW, Smookler DS, Kassiri Z et al (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110:2401–2409. doi:10.1161/01.CIR.0000134959.83967.2D

    Article  PubMed  CAS  Google Scholar 

  40. Wagner DR, Combes A, McTiernan C et al (1998) Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor necrosis factor-alpha. Circ Res 82:47–56

    PubMed  CAS  Google Scholar 

  41. Blum A, Sclarovsky S, Rehavia E, Shohat B (1994) Levels of T-lymphocyte subpopulations, interleukin-1 beta, and soluble interleukin-2 receptor in acute myocardial infarction. Am Heart J 127:1226–1230. doi:10.1016/0002-8703(94)90040-X

    Article  PubMed  CAS  Google Scholar 

  42. Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470. doi:10.1136/hrt.2002.007005

    Article  PubMed  CAS  Google Scholar 

  43. Rauchhaus M, Doehner W, Francis DP et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067

    PubMed  CAS  Google Scholar 

  44. Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock. Crit Care Clin 16:251–287. doi:10.1016/S0749-0704(05)70110-X

    Article  PubMed  CAS  Google Scholar 

  45. Kumar A, Brar R, Wang P et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276

    PubMed  CAS  Google Scholar 

  46. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397. doi:10.1038/41131

    Article  PubMed  CAS  Google Scholar 

  47. Methe H, Kim JO, Kofler S et al (2005) Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation 111:2654–2661. doi:10.1161/CIRCULATIONAHA.104.498865

    Article  PubMed  CAS  Google Scholar 

  48. Liu CJ, Cheng YC, Lee KW et al (2008) Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol Cell Biochem 313:167–178. doi:10.1007/s11010-008-9754-0

    Article  PubMed  CAS  Google Scholar 

  49. Baumgarten G, Knuefermann P, Nozaki N et al (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624. doi:10.1086/320712

    Article  PubMed  CAS  Google Scholar 

  50. Li C, Ha T, Kelley J et al (2004) Modulating Toll-like receptor mediated signaling by (1–3)-beta-D-glucan rapidly induces cardioprotection. Cardiovasc Res 61:538–547. doi:10.1016/j.cardiores.2003.09.007

    Article  PubMed  CAS  Google Scholar 

  51. Ravingerova T, Barancik M, Strniskova M (2003) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138. doi:10.1023/A:1024119224033

    Article  PubMed  CAS  Google Scholar 

  52. Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62. doi:10.1016/j.yjmcc.2004.11.004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Jung Liu.

Additional information

Wei-Wen Kuo, Chih-Yang Huang and Chung-Jung Liu contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YC., Chen, LM., Chang, MH. et al. Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells. Mol Cell Biochem 325, 15–23 (2009). https://doi.org/10.1007/s11010-008-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0016-y

Keywords

Navigation