Skip to main content
Log in

Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sirt1, a NAD+-dependent histone deacetylase, may regulate senescence, metabolism, and apoptosis. In this study, primary pig preadipocytes were cultured in DMEM/F12 medium containing 10% fetal bovine serum (FBS) with or without reagents affecting Sirt1 activity. The adipocyte differentiation process was visualized by light microscopy after Oil red O staining. Proliferation and differentiation of preadipocytes was measured using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and Oil red O extraction. Expression of Sirt1, FoxO1, and adipocyte specific genes was detected with semi-quantitive RT-PCR. The results showed that Sirt1 mRNA was widely expressed in various pig tissues from different developmental stages. Sirt1 mRNA was expressed throughout the entire differentiation process of pig preadipocytes. Resveratrol significantly increased Sirt1 mRNA expression, but decreased the expression of FoxO1 and adipocyte marker gene PPARγ2. Resveratrol significantly inhibited pig preadipocyte proliferation and differentiation. Nicotinamide decreased the expression of Sirt1 mRNA, but increased the expression of FoxO1 and adipocyte specific genes. Nicotinamide greatly stimulated the proliferation and differentiation of pig preadipocytes. In conclusion, these results indicate that Sirt1 may modulate the proliferation and differentiation of pig preadipocytes. Sirt1 may down-regulate pig preadipocytes proliferation and differentiation through repression of adipocyte genes or FoxO1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Morrison RF, Farmer SR (2000) Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130:3116S–3121S

    PubMed  CAS  Google Scholar 

  2. Gregoire FM (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med 226:997–1002

    CAS  Google Scholar 

  3. Fe`ve B (2005) Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab 19:483–499

    Article  CAS  Google Scholar 

  4. Imai SI, Armstrong CM, Kaeberlein M et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  PubMed  CAS  Google Scholar 

  5. Smith JS, Brachmann CB, Celic I et al (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2. Proc Natl Acad Sci USA 97:6658–6663

    Article  PubMed  CAS  Google Scholar 

  6. Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-Ribosyltransferase activity. Biochem Biophys Res Commun 260:273–279

    Article  PubMed  CAS  Google Scholar 

  7. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  PubMed  CAS  Google Scholar 

  8. Sherman JM, Stone EM, Freeman-Cook LL et al (1999) The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell 10:3045–3059

    PubMed  CAS  Google Scholar 

  9. Motta MC, Divecha N, Lemieux M et al (2004) Mammalian SIRT1 represses Forkhead transcription factors. Cell 116:551–563

    Article  PubMed  CAS  Google Scholar 

  10. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  11. Fulco M, Schiltz RL, Iezzi S et al (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12:51–62

    Article  PubMed  CAS  Google Scholar 

  12. Luo J, Nikolaev AY, Imai S et al (2001) Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107:137–148

    Article  PubMed  CAS  Google Scholar 

  13. Vaziri H, Dessain SK, Eaton EN et al (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  14. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  15. McBurney MW, Yang XF, Jardine K et al (2003) The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38–54

    Article  PubMed  CAS  Google Scholar 

  16. Picard F, Kurtev M, Chung NJ et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429:771–776

    Article  PubMed  CAS  Google Scholar 

  17. Bäckesjö CM, Li Y, Lindgren U et al (2006) Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 21:993–1002

    Article  PubMed  Google Scholar 

  18. Picard F, Guarente L (2005) Molecular links between aging and adipose tissue. Int J Obesity 29: S36-S39

    Article  CAS  Google Scholar 

  19. Bordone L, Motta MC, Picard F et al (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol 4:210–220

    Article  CAS  Google Scholar 

  20. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  21. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  22. Gianfranco B, Alfredo C (2004) Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann 1st Super Sanita 40:241–244

    Google Scholar 

  23. Belliger DA, Merrichks EP, Nichols TC (2006) Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47:243–258

    Google Scholar 

  24. Larsen MO, Rolin B (2004) Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 45:303–313

    PubMed  CAS  Google Scholar 

  25. Fernandez ML (2001) Guinea pigs as models for cholesterol and lipoprotein metabolism. J Nutr 131:10–20

    PubMed  CAS  Google Scholar 

  26. Vodicka P, Smetana K, Dvoránková B et al (2005) The miniature pig as an animal model in biomedical research. N Y Acad Sci 1049:161–171

    Article  Google Scholar 

  27. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  28. Buck SW, Gallo CM, Smith JS (2004) Diversity in the Sir2 family of protein deacetylases. J Leukocyte Biol 75:939–950

    Article  PubMed  CAS  Google Scholar 

  29. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  30. Kops GJ, Ruiter ND, Vries-Smits AM et al (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs FMJ, Heide LP, Wijchers PJEC et al (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967

    Article  PubMed  CAS  Google Scholar 

  32. Nakae J, Biggs WH, Kitamura T et al (2002) Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding Forkhead transcription factor foxo1. Nat Genet 32:245–253

    Article  PubMed  CAS  Google Scholar 

  33. Altomonte J, Cong L, Harbaran S et al (2004) Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 114:1493–1503

    Article  PubMed  CAS  Google Scholar 

  34. Zhang WW, Patil S, Chauhan B et al (2006) FoxO1 regulates multiple metabolic pathways in the liver. J Biol Chem 281:10105–10117

    Article  PubMed  CAS  Google Scholar 

  35. Nakae J, Kitamura T, Kitamura Y et al (2003) The Forkhead transcription factor foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129

    Article  PubMed  CAS  Google Scholar 

  36. Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  PubMed  CAS  Google Scholar 

  37. Michishita E, Park JY, Burneskis JM et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635

    Article  PubMed  CAS  Google Scholar 

  38. Fang JG, Lu M, Chen ZH et al (2002) Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry 8:4191–4198

    Article  PubMed  CAS  Google Scholar 

  39. Ray PS, Maulik G, Cordis GA et al (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 27:160–169

    Article  PubMed  CAS  Google Scholar 

  40. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  PubMed  CAS  Google Scholar 

  41. Yeung F, Hoberg JE, Ramsey CS et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  CAS  Google Scholar 

  42. Dietrich L S (1971) Regulation of nicotinamide metabolism. Am J Clin Nutr 24:800–804

    CAS  Google Scholar 

  43. Bitterman KJ, Anderson RM, Cohen HY et al (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem 277:45099–45107

    Article  PubMed  CAS  Google Scholar 

  44. Kaanders JH, Pop LA, Marres HA et al (2002) ARCON: experience in 215 patients with advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 52:769–778

    Article  PubMed  Google Scholar 

  45. Otonkoski T, Beattie GM, Mally MI et al (1993) Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest 92:1459–1466

    Article  PubMed  CAS  Google Scholar 

  46. Vaca P, Berna G, Martı´n F et al (2003) Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. Transplant Proc 35:2021–2023

    Article  PubMed  CAS  Google Scholar 

  47. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    PubMed  CAS  Google Scholar 

  48. Giannakou M E, Partridge L (2004) The interaction between FOXO and SIRT1: tipping the balance towards survival. TRENDS Cell Biol 14:408–412

    Article  PubMed  CAS  Google Scholar 

  49. Armoni M, Harel C, Karni S et al (2006) FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes: a novel paradigm to increase insulin sensitivity. J Biol Chem 281:19881–19891

    Article  PubMed  CAS  Google Scholar 

  50. Gan LX, Han YS, Bastianett S et al (2005) FoxO-dependent and -independent mechanisms mediate SirT1 effects on IGFBP-1 gene expression. Biochem Biophys Res Commun 337:1092–1096

    Article  PubMed  CAS  Google Scholar 

  51. Lemieux ME, Yang X, Jardine K et al (2005) The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev 126:1097–1105

    Article  PubMed  CAS  Google Scholar 

  52. Han MK, Mantel C, Guo Y et al (2005) Role of SIRT1 in proliferation and self-renewal of mouse embryonic stem cells. Proc Soc Exper Biol Med 106:520

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by National Basic Research Program of China (2004CB117506). We thank Dr. Z. Y. Zhang (Gemin X Company, Canada) and Dr. J. Gale (Northwest A&F University) for their suggestions and correction of the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-She Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Pang, WJ., Yang, YJ. et al. Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307, 129–140 (2008). https://doi.org/10.1007/s11010-007-9592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9592-5

Keywords

Navigation