Skip to main content

Advertisement

Log in

Metallothionein-3 and neuronal nitric oxide synthase levels in brains from the Tg2576 mouse model of Alzheimer's disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Using antiserum against the recombinant isoform 3 of mouse brain metallothionein (MT3), the amount of MT3 protein was determined in whole brain homogenates from the Tg2576 transgenic mouse model of Alzheimer's Disease. Twenty-two month old transgenic positive mice showed a 27% decrease of MT3 normalized to the total protein in the extracts compared to same age, control transgenic negative mice. Metallothioneins bind seven molar equivalents of divalent metal ions per mole of protein so metal levels also were measured in these whole brain extracts using inductively coupled plasma atomic absorption (ICP-AA) spectrometry. No significant difference was observed for any metal assayed. Because neuronal nitric oxide synthase (nNOS) is involved in neurodegenerative disease and nitric oxide specifically interacts with MT3, the concentration and total nNOS activity also were evaluated. The transgenic positive mice showed a decrease of 28% in nNOS protein compared to the same age transgenic negative mice. Normalized to the amount of nNOS protein, total NOS activity was higher in the transgenic positive mice. These data showed that protein levels of both MT3 and nNOS were reduced in transgenic positive mice that show many characteristics of Alzheimer's Disease. In vitro studies suggested that MT3 was not a likely candidate for directly affecting nNOS activity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer's Disease

EGTA:

ethylene glycol bis(β-amino ethyl ether)N,N′-tetraacetate

ICP-AA:

inductively coupled plasma atomic absorption spectrometry

MT1:

isoform 1 of metallothionein

MT2:

isoform 2 of metallothionein

MT3:

isoform 3 of metallothionein

Cd7-MT3:

MT3 containing seven molar-equivalents of cadmium MT3

NO:

nitric oxide

NOS:

nitric oxide synthase

pNP:

para-nitrophenol

pNPP:

para-nitrophenyl phosphate

TBS:

tris buffered saline

References

  1. Klaassen CD (ed): Metallothionein IV. Birkhauser Verlaag, Basel, 1999

  2. Zangger K, Armitage IM: Dynamics of interdomain and intermolecular interactions in mammalian metallothioneins. J Inorg Biochem 88: 135–143, 2002

    Article  CAS  PubMed  Google Scholar 

  3. Uchida Y, Ihara Y, Tomonaga M: Alzheimer's disease brain extract stimulates the survival of cerebral cortical neurons from neonatal rats. Biochem Biophys Res Commun 150: 1263–1267, 1988

    Article  CAS  PubMed  Google Scholar 

  4. Uchida Y, Tomonaga M: Neurotrophic action of Alzheimer's disease brain extract is due to the loss of inhibitory factors for survival and neurite formation of cerebral cortical neurons. Brain Res 481: 190–193, 1989

    Article  CAS  PubMed  Google Scholar 

  5. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M: The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337–347, 1991

    Article  CAS  PubMed  Google Scholar 

  6. Palmiter RD: Constitutive expression of metallothionein-III (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicol Appl Pharmacol 135: 139–146, 1995

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi H, Uchida Y, Ihara Y, Nakajima K, Kohsaka K, Miyatake T, Tsuji S: Molecular cloning of rat growth inhibitory factor cDNA and the expression in the central nervous system. Brain Res Mol Brain Res 19: 188–194, 1993

    CAS  PubMed  Google Scholar 

  8. Belloso E, Henandez J, Giralt M, Kille CD, Hidalgo J: Effect of stress on mouse and rat brain metallothionein I and II mRNA levels. Neuroendocrinology 64: 430–439, 1996

    CAS  PubMed  Google Scholar 

  9. Hidalgo J, Belloso E, Henandez J, Gasull T, Molinero A: Role of glucocorticoids on rat brain metallothionein-I and -III response to stress. Stress 1: 231–240, 1997

    CAS  PubMed  Google Scholar 

  10. Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T: Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer's disease. EMBO J 11: 4843–4850, 1992

    CAS  PubMed  Google Scholar 

  11. Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE Metallothionein III is reduced in Alzheimer's disease. Brain Res 894: 37–45, 2001

    Google Scholar 

  12. Erickson JC, Sewell AK, Jensen LT, Winge DR, Palmiter RD: Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III, GIF. Brain Res 649: 297–304, 1994

    Article  CAS  PubMed  Google Scholar 

  13. Amoureux MC, Van Gool D, Herrero MT, Dom R, Colpaert FC, Pauwels PJ: Regulation of metallothionein-III (GIF) mRNA in the brain of patients with Alzheimer disease is not impaired. Mol Chem Neuropathol 32: 101–121, 1997

    CAS  PubMed  Google Scholar 

  14. Bush AI: The metallobiology of Alzheimer's disease. Trends Neurosci 26: 207–214, 2003

    Article  CAS  PubMed  Google Scholar 

  15. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI: Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J Neurochem 75: 1219–1233, 2000

    Article  CAS  PubMed  Google Scholar 

  16. Lovell MA, Xie C, Markesberry WR: Protection against amyloid beta peptide toxicity by zinc. Brain Res 823: 88–95, 1999

    Article  CAS  PubMed  Google Scholar 

  17. Moreira P, Pereira C, Santos MS, Oliveira C: Effect of zinc ions on the cytotoxicity induced by the amyloid beta-peptide. Antioxid Redox Signal 2: 317–325, 2000

    CAS  PubMed  Google Scholar 

  18. Irie Y, Keung WM: Metallothionein-III antagonizes the neurotoxic and neurotrophic effects of amyloid beta peptides. Biochem Biophys Res Commun 282: 416–420, 2001

    Article  CAS  PubMed  Google Scholar 

  19. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD: Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci 14: 5844–5857, 1994

    CAS  PubMed  Google Scholar 

  20. Erickson JC, Masters BA, Kelly EJ, Brinster RL, Palmiter RD: Expression of human metallothionein-III in transgenic mice. Neurochem Int 27: 35–41, 1995

    Article  CAS  PubMed  Google Scholar 

  21. Montoliu C, Monfort P, Carrasco J, Palacios O, Capdevilla M, Hidalgo J, Felipo V: Metallothioneien-III prevents glutamate and nitric oxide neurotoxicity in primary cultures of cerebellar neurons. J Neurochem 75: 266–273, 2000

    Article  CAS  PubMed  Google Scholar 

  22. de la Torre JC, Stefano GB: Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Rev 34: 119–136, 2000

    Google Scholar 

  23. Law A, Gauthier S, Quirion R: Say NO to Alzheimer's disease: The putative links between nitric oxide and dementia of the Alzheimer's type. Brain Res Rev 35: 73–96, 2001

    Article  CAS  PubMed  Google Scholar 

  24. Molinero A, Carrasco J, Hernandez J, Hidalgo J: Effect of nitric oxide synthesis inhibition on mouse liver and brain metallothionein expression. Neurochem Int 33, 559–566, 1998

    Article  CAS  PubMed  Google Scholar 

  25. Yang SN, Hsieh WY, Liu DD, Tsai LM, Tung CS, Wu JN: The involvement of nitric oxide in synergistic neuronal damage induced by beta-amyloid peptide and glutamate in primary rat cortical neurons. Chin J Physiol 41: 175–179, 1998

    CAS  PubMed  Google Scholar 

  26. Norris PJ, Faull RLM, Emson PC: Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains. Mol Brain Res 41: 36–49, 1996

    Article  CAS  PubMed  Google Scholar 

  27. Yew DT, Wong HW, Li WP, Lai WL, Yu W-HA: Nitric oxide synthase neurons in different areas of normal aged and Alzheimer's brains. Neuroscience 89: 675–686, 1999

    Article  CAS  PubMed  Google Scholar 

  28. Quinn J, Davis F, Woodward WR, Eckenstein F: Beta-amyloid plaques induce neuritic dystrophy of nitric oxide-producing neurons in a transgenic mouse model of Alzheimer's Disease. Exp Neurol 168: 203–212, 2001

    Article  CAS  PubMed  Google Scholar 

  29. Hartlage-Rubsamen M, Apelt J, Schliebs R: Fibrillary beta-amyloid deposits are closely associated with atrophic nitric oxide synthase (NOS)-expressing neurons but do not upregulate the inducible NOS in transgenic Tg2576 mouse brain with Alzheimer pathology. Neurosci Lett 302: 73–76, 2001

    CAS  PubMed  Google Scholar 

  30. Lee SC, Zhao ML, Hirano A, Dickson DW: Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: Association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropath Exp Neurol 58: 1163–1169, 1999

    CAS  PubMed  Google Scholar 

  31. Vodovotz Y, Lucia MS, Flanders KC, Chesler L, Xie QW, Smith TW, Weidner J, Mumford R, Webber R, Nathan C, Roberts AB, Lippa CF, Sporn MB: Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J Exp Med 184: 1425–1437, 1996

    Article  CAS  PubMed  Google Scholar 

  32. Luth H-J, Holzer M, Gartner U, Staufenbiel M, Arendt T: Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer's disease, in APP23 transgenic mice and after experimental brain lesion in rat: Evidence for an induction by amyloid pathology. Brain Res 913: 57–67, 2001

    CAS  PubMed  Google Scholar 

  33. Siles E, Martinez-Lara E, Canuelo A, Sanchez M, Hernandez R, Lopez-Ramos JC, Del Moral ML, Esteban FJ, Blanco S, Pedrosa JA, Rodrigo J, Peinado MA: Age-related changes of the nitric oxide system in the rat brain. Brain Res 956: 385–392, 2002

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G: Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274: 99–102, 1996

    Article  CAS  PubMed  Google Scholar 

  35. Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TVP, Hyman BT, Younkin SG, Hsiao KK: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci 2: 271–276, 1999

    CAS  PubMed  Google Scholar 

  36. Ashe KH: Learning and memory in transgenic mice modeling Alzheimer's disease. Learn Mem 8: 301–308, 2001

    CAS  PubMed  Google Scholar 

  37. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci 21: 372–381, 2001

    Google Scholar 

  38. Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH: Reversible memory loss in a mouse transgenic model of Alzheimer' disease. J Neurosci 22: 6331–6335, 2002

    CAS  PubMed  Google Scholar 

  39. Westerman M, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson G, Younkin SG, Ashe KH: The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 22: 1858–1867, 2002

    CAS  PubMed  Google Scholar 

  40. Tokheim AM, Armitage IM, Martin BL: Development of an antiserum specific for isoform 3 of metallothionein. J Biochem Biophys Methods 63: 43–52, 2005

    Article  CAS  PubMed  Google Scholar 

  41. Oz G, Zangger K, Armitage IM: Three-dimensional structure and dynamics of a brain specific growth inhibitory factor: metallothionein-3. Biochemistry 40: 11433–11441, 2001

    Article  CAS  PubMed  Google Scholar 

  42. Bradford MM: A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  CAS  PubMed  Google Scholar 

  43. Turner BM: The use of alkaline-phosphatase-conjugated second antibody for the visualization of electrophoretically separated proteins recognized by monoclonal antibodies. J Immunol Methods 63: 1–6, 1983

    Article  CAS  PubMed  Google Scholar 

  44. Derango R, Page J: The quantitation of coupled bead antibody by enzyme-linked immunosorbent assay. J Immunoassay 17: 145–153, 1996

    CAS  PubMed  Google Scholar 

  45. Martasek P, Miller RT, Roman LJ, Shea T, Masters BS: Assay of isoforms of Escherichia coli-expressed nitric oxide synthase. Method Enzymol 301: 70–78, 1999

    CAS  Google Scholar 

  46. Roman LJ, Martasek P, Masters BSS: Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 102: 1179–1189, 2002

    Article  CAS  PubMed  Google Scholar 

  47. Carrasco J, Girault M, Molinero A, Penkowa M, Moos T, Hidalgo J: Metallothionein (MT)-III: generation of polyclonal antibodies, comparison with MT-I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer's disease brains. J Neurotrauma 16: 1115–1129, 1999

    CAS  PubMed  Google Scholar 

  48. Maynard CJ, Cappia R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li Q-X: Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277: 44670–44676, 2002

    Article  CAS  PubMed  Google Scholar 

  49. Yang MS, Wong MH: Changes in Ca, Cu, Fe, Mg, and Zn contents after prolonged oral ingestion of brick tea liquor containing a high level of Al. Biol Trace Elem Res 80: 67–76, 2001

    Article  CAS  PubMed  Google Scholar 

  50. Ii M, Sunamoto M, Ohnishi K, Ichimori Y: Beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 720: 93–100, 1996

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM: Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18: 2040–2055, 1998

    CAS  PubMed  Google Scholar 

  52. Stein TD, Johnson JA: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22: 7380–7388, 2002

    CAS  PubMed  Google Scholar 

  53. Nakane M, Mitchell J, Forstermann U, Murad F: Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem Biophys Res Commun 180: 1396–1402, 1991

    Article  CAS  PubMed  Google Scholar 

  54. Okada D: Differential effects of protein kinase C on neuronal nitric oxide synthase activity in rat cerebellar slices and in vitro. J Chem Neuroanat 10: 213–220, 1996

    Article  CAS  PubMed  Google Scholar 

  55. Rossner S, Mehlhorn G, Schliebs R, Bigl V: Increased neuronal and glial expression of protein kinase C isoforms in neocortex of transgenic Tg2576 mice with amyloid pathology. Eur J Neurosci 13: 269–278, 2001

    CAS  PubMed  Google Scholar 

  56. Saitoh T, Iimoto D: Aberrant protein phosphorylation and cytoarchitecture in Alzheimer's disease. Prog Clin Biol Res 317: 769–780, 1989

    CAS  PubMed  Google Scholar 

  57. Van Dorpe J, Spittaels K, Van den Haute CV, Dewachter I, Moechars D, Geerts H, Van Leuven F: Neuropathobiology in transgenic mice. The case of Alzheimer's disease. Methods Mol Biol 209: 333–361, 2003

    CAS  PubMed  Google Scholar 

  58. Haas U, Sparks DL: Cortical Cathepsin D: activity and immunolocalization in Alzheimer disease, critical coronary artery disease, and aging. Mol Chem Neuropathol 29: 1–14, 1996

    CAS  PubMed  Google Scholar 

  59. Chevallier N, Vizzavona J, Marambaud P, Baur C, Spillantini M, Fulcrand P, Martinez J, Goedert M, Vincent J-P, Checler F: Cathepsin D displays in vitro beta-secretase-like specificity. Brain Res 750: 11–19, 1997

    Article  CAS  PubMed  Google Scholar 

  60. Sheta EA, McMillan K, Masters BSS: Evidence for a bidomain structure of consitutive cerebellar nitric oxide synthase. J Biol Chem 269: 15147–15153, 1994

    CAS  PubMed  Google Scholar 

  61. Lowe PN, Smith D, Stammers DK, Riveros-Moreno V, Moncada S, Charles I, Boyhan A: Identification of the domain of neuronal nitric oxide synthase by limited proteolysis. Biochem J 314: 55–62, 1996

    CAS  PubMed  Google Scholar 

  62. Klaassen CD, Choudhuri S, McKim JM Jr, Lehman-McKeeman LD, Kershaw WC: In vitro and in vivo studies on the degradation of metallothionein. Environ Health Perspect 102(S3): 141–146, 1994

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Armitage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, B.L., Tokheim, A.M., McCarthy, P.T. et al. Metallothionein-3 and neuronal nitric oxide synthase levels in brains from the Tg2576 mouse model of Alzheimer's disease. Mol Cell Biochem 283, 129–137 (2006). https://doi.org/10.1007/s11010-006-2390-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-2390-7

Key Words

Navigation