Skip to main content
Log in

Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Besides serving as essential substrates for β-oxidation and synthesis of triacylglycerols and more complex lipids like sphingolipids and sterol esters, long-chain fatty acyl-CoA esters are increasingly being recognized as important regulators of enzyme activities and gene transcription. Acyl-CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes and accumulation of vesicles of variable sizes. In contrast to synthesis and turn-over of glycerolipids, the levels of very-long-chain fatty acids, long-chain bases and ceramide are severely affected by Acb1p depletion, suggesting that Acb1p, rather than playing a general role, serves specific roles in cellular lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faergeman NJ, Knudsen J: Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323: 1997

  2. Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennett CD, Costa E: Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA 80: 3531–3535, 1983

    Article  PubMed  CAS  Google Scholar 

  3. Knudsen J, Nielsen M: Diazepam-binding inhibitor: a neuropeptide and/or an acyl-CoA ester binding protein? Biochem J 265: 927–929, 1990

    PubMed  CAS  Google Scholar 

  4. Chen ZW, Agerberth B, Gell K, Andersson M, Mutt V, Ostenson CG, Efendic S, Barros Soderling J, Persson B, Jornvall H: Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release. Eur J Biochem 174: 239–245, 1988

    Article  PubMed  CAS  Google Scholar 

  5. Ostenson CG, Ahren B, Karlsson S, Knudsen J, Efendic S: Inhibition by rat diazepam-binding inhibitor/acyl-CoA-binding protein of glucose-induced insulin secretion in the rat. Eur J Endocrinol 131: 201–204, 1994

    Article  PubMed  CAS  Google Scholar 

  6. Yanagibashi K, Ohno Y, Kawamura M, Hall PF: The regulation of intracellular transport of cholesterol in bovine adrenal cells: purification of a novel protein. Endocrinology 123: 2075–2082, 1988

    PubMed  CAS  Google Scholar 

  7. Gaigg B, Neergaard TB, Schneiter R, Hansen JK, Faergeman NJ, Jensen NA, Andersen JR, Friis J, Sandhoff R, Schroder HD, Knudsen J: Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae. Mol Biol Cell 12: 1147–1160, 2001

    PubMed  CAS  Google Scholar 

  8. Faergeman NJ, Feddersen S, Christiansen JK, Larsen MK, Schneiter R, Ungermann C, Mutenda K, Roepstorff P, Knudsen J: Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem J 380: 907–918, 2004

    Article  PubMed  CAS  Google Scholar 

  9. Kragelund BB, Knudsen J, Poulsen FM: Acyl-coenzyme A binding protein (ACBP). Biochim Biophys Acta 1441: 150–161, 1999

    PubMed  CAS  Google Scholar 

  10. Knudsen J, Burton M, Fæ rgeman NJ: Long-chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. Ed. Ger van der Vusse. Lipobiology. Adv Mol Cell Biol 33: 123–152, 2004

    Article  CAS  Google Scholar 

  11. Lihrmann I, Plaquevent JC, Tostivint H, Raijmakers R, Tonon MC, Conlon JM, Vaudry H: Frog diazepam-binding inhibitor: peptide sequence, cDNA cloning, and expression in the brain. Proc Natl Acad Sci USA 91: 6899–6903, 1994

    Article  PubMed  CAS  Google Scholar 

  12. Rose TM, Schultz ER, Sasaki GC, Kolattukudy PE, Shoyab M: Nucleotide sequence and genomic structure of duck acyl-CoA binding protein/diazepam-binding inhibitor: co-localization with S-acyl fatty acid synthase thioesterase. DNA Cell Biol 13: 669–678, 1994

    PubMed  CAS  Google Scholar 

  13. Ivell R, Balvers M: The evolution of the endozepine-like peptide (ELP) in the mammalian testis. Reprod Domest Anim 36: 153–156, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Pusch W, Balvers M, Hunt N, Ivell R: A novel endozepine-like peptide (ELP) is exclusively expressed in male germ cells. Mol Cell Endocrinol 122: 69–80, 1996

    Article  PubMed  CAS  Google Scholar 

  15. Pusch W, Balvers M, Weinbauer GF, Ivell R: The rat endozepine-like peptide gene is highly expressed in late haploid stages of male germ cell development. Biol Reprod 63: 763–768, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Pusch W, Jahner D, Spiess AN, Ivell R: Rat endozepine-like peptide (ELP): cDNA cloning, genomic organization and tissue-specific expression. Gene 235: 51–57, 1999

    Article  PubMed  CAS  Google Scholar 

  17. Metzner M, Ruecknagel KP, Knudsen J, Kuellertz G, Mueller-Uri F, Diettrich B: Isolation and characterization of two acyl-CoA-binding proteins from proembryogenic masses of Digitalis lanata Ehrh. Planta 210: 683–685, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Andersen KV, Poulsen FM: Three-dimensional structure in solution of acyl-coenzyme A binding protein from bovine liver. J Mol Biol 226: 1131–1141, 1992

    Article  PubMed  CAS  Google Scholar 

  19. Kragelund BB, Andersen KV, Madsen JC, Knudsen J, Poulsen FM: Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A. J Mol Biol 230: 1260–1277, 1993

    Article  PubMed  CAS  Google Scholar 

  20. van Aalten DM, Milne KG, Zou JY, Kleywegt GJ, Bergfors T, Ferguson MA, Knudsen J, Jones TA: Binding site differences revealed by crystal structures of Plasmodium falciparum and bovine acyl-CoA binding protein. J Mol Biol 309: 181–192, 2001

    Article  PubMed  CAS  Google Scholar 

  21. Teilum K, Thormann T, Carterer N, Poulsen HI, Jensen PH, Knudsen J, Kragelund BB, Poulsen FM: Different secondary structure elements as scaffolds for protein folding transition states of two homologues four helix bundles. Proteins accepted, 2004

  22. Kragelund BB, Hojrup P, Jensen MS, Schjerling CK, Juul E, Knudsen J, Poulsen FM: Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J Mol Biol 256: 187–200, 1996

    Article  PubMed  CAS  Google Scholar 

  23. Rasmussen JT, Borchers T, Knudsen J: Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J 265: 849–855, 1990

    PubMed  CAS  Google Scholar 

  24. Rosendal J, Ertbjerg P, Knudsen J: Characterization of ligand binding to acyl-CoA-binding protein. Biochem J 290(Pt 2): 321–326, 1993

    Google Scholar 

  25. Knudsen J, Faergeman NJ, Skott H, Hummel R, Borsting C, Rose TM, Andersen JS, Hojrup P, Roepstorff P, Kristiansen K: Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 302(Pt 2): 479–485, 1994

    Google Scholar 

  26. Rasmussen JT, Faergeman NJ, Kristiansen K, Knudsen J: Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis. Biochem J 299(Pt 1): 165–170, 1994

    Google Scholar 

  27. Faergeman NJ, Sigurskjold BW, Kragelund BB, Andersen KV, Knudsen J: Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry. Biochemistry 35: 14118–14126, 1996

    Article  PubMed  CAS  Google Scholar 

  28. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM, Dobson CM: Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of protein-CoA Ligand Binding and Assembly. Journal of the American Chemical Society 118: 8646–8653, 1996

    Article  CAS  Google Scholar 

  29. Kragelund BB, Poulsen K, Andersen KV, Baldursson T, Kroll JB, Neergard TB, Jepsen J, Roepstorff P, Kristiansen K, Poulsen FM, Knudsen J: Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein. Biochemistry 38: 2386–2394, 1999

    Article  PubMed  CAS  Google Scholar 

  30. Alho H, Costa E, Ferrero P, Fujimoto M, Cosenza Murphy D, Guidotti A: Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science 229: 179–182, 1985

    Article  PubMed  CAS  Google Scholar 

  31. Alho H, Fremeau RT, Jr., Tiedge H, Wilcox J, Bovolin P, Brosius J, Roberts JL, Costa E: Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Proc Natl Acad Sci USA 85: 7018–7022, 1988

    Article  PubMed  CAS  Google Scholar 

  32. Alho H, Harjuntausta T, Schultz R, Pelto Huikko M, Bovolin P: Immunohistochemistry of diazepam binding inhibitor (DBI) in the central nervous system and peripheral organs: its possible role as an endogenous regulator of different types of benzodiazepine receptors. Neuropharmacology 30: 1381–1386, 1991

    PubMed  CAS  Google Scholar 

  33. Ball JA, Ghatei MA, Sekiya K, Krausz T, Bloom SR: Diazepam binding inhibitor-like immunoreactivity(51–70): distribution in human brain, spinal cord and peripheral tissues. Brain Res 479: 300–305, 1989

    Article  PubMed  CAS  Google Scholar 

  34. Alho H, Bovolin P, Jenkins D, Guidotti A, Costa E: Cellular and subcellular localization of an octadecaneuropeptide derived from diazepam binding inhibitor: immunohistochemical studies in the rat brain. J Chem Neuroanat 2: 301–318, 1989

    PubMed  CAS  Google Scholar 

  35. Alho H, Bovolin P, Slobodyansky E: Diazepam binding inhibitor (DBI) processing: immunohistochemical studies in the rat brain. Neurochem Res 15: 209–216, 1990

    Article  PubMed  CAS  Google Scholar 

  36. Ferrarese C, Alho H, Guidotti A, Costa E: Co-localization and co-release of GABA and putative allosteric modulators of GABA receptor. Neuropharmacology 26: 1011–1018, 1987

    Article  PubMed  CAS  Google Scholar 

  37. Tonon MC, Desy L, Nicolas P, Vaudry H, Pelletier G: Immunocytochemical localization of the endogenous benzodiazepine ligand octadecaneuropeptide (ODN) in the rat brain. Neuropeptides 15: 17–24, 1990

    Article  PubMed  CAS  Google Scholar 

  38. Tong Y, Toranzo D, Pelletier G: Localization of diazepam-binding inhibitor (DBI) mRNA in the rat brain by high resolution in situ hybridization. Neuropeptides 20: 33–40, 1991

    Article  PubMed  CAS  Google Scholar 

  39. Ferrarese C, Vaccarino F, Alho H, Mellstrom B, Costa E, Guidotti A: Subcellular location and neuronal release of diazepam binding inhibitor. J Neurochem 48: 1093–1102, 1987

    Article  PubMed  CAS  Google Scholar 

  40. Malagon M, Vallarino M, Tonon MC, Vaudry H: Localization and characterization of diazepam-binding inhibitor (DBI)- like peptides in the brain and pituitary of the trout (Salmo gairdneri). Brain Res 576: 208–214, 1992

    Article  PubMed  CAS  Google Scholar 

  41. Rose TM, Schultz ER, Sasaki GC, Kolattukudy PE, Shoyab M: Nucleotide sequence and genomic structure of duck acyl-CoA binding protein/diazepam-binding inhibitor: co-localization with S-acyl fatty acid synthase thioesterase. DNA Cell Biol 13: 669–678, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Ferrarese C, Mennini T, Pecora N, Gobbi M, Appollonio I, Bernasconi P, Frigo M, Regondi C, Pierpaoli C, Frattola L: Acute noise stress in rats increases the levels of diazepam binding inhibitor (DBI) in hippocampus and adrenal gland. Psychopharmacology (Berl) 103: 339–342, 1991

    Article  CAS  Google Scholar 

  43. Ferrarese C, Mennini T, Pecora N, Pierpaoli C, Frigo M, Marzorati C, Gobbi M, Bizzi A, Codegoni A, Garattini S,: Diazepam binding inhibitor (DBI) increases after acute stress in rat. Neuropharmacology 30: 1445–1452, 1991

    Article  PubMed  CAS  Google Scholar 

  44. Katsura M, Mohri Y, Shuto K, Tsujimura A, Ukai M, Ohkuma S: Psychological stress, but not physical stress, causes increase in diazepam binding inhibitor (DBI) mRNA expression in mouse brains. Brain Res Mol Brain Res 104: 103–109, 2002

    Article  PubMed  CAS  Google Scholar 

  45. Katsura M, Ohkuma S, Tsujimura A, Kuriyama K: Increase of diazepam binding inhibitor mRNA levels in the brains of chronically ethanol-treated and -withdrawn mice. J Pharmacol Exp Ther 273: 1529–1533, 1995

    PubMed  CAS  Google Scholar 

  46. Katsura M, Ohkuma S, Jun X, Tsujimura A, Kuriyama K: Ethanol stimulates diazepam binding inhibitor (DBI) mRNA expression in primary cultured neurons. Brain Res Mol Brain Res 34: 355–359, 1995

    Article  PubMed  CAS  Google Scholar 

  47. Katsura M, Ohkuma S, Tsujimura A, Xu J, Hibino Y, Ishikawa E, Kuriyama K: Functional involvement of benzodiazepine receptors in ethanol-induced increases of diazepam binding inhibitor (DBI) and its mRNA in the mouse brain. Brain Res Mol Brain Res 54: 124–132, 1998

    Article  PubMed  CAS  Google Scholar 

  48. Alho H, Miyata M, Korpi E, Kiianmaa K, Guidotti A: Studies of a brain polypeptide functioning as a putative endogenous ligand to benzodiazepine recognition sites in rats selectively bred for alcohol related behavior. Alcohol Alcohol Suppl 1: 637–641, 1987

    PubMed  CAS  Google Scholar 

  49. Katsura M, Ohkuma S, Chen DT, Tsujimura A, Kuriyama K: Nicotine increases diazepam binding inhibitor (DBI) mRNA in primary cultured neurons. Neurosci Lett 168: 1–4, 1994

    Article  PubMed  CAS  Google Scholar 

  50. Katsura M, Shuto K, Mohri Y, Tsujimura A, Ohkuma S: Withdrawal from nicotine facilitates diazepam binding inhibitor mRNA expression in mouse cerebral cortex. Brain Res Mol Brain Res 97: 194–198, 2001

    Article  PubMed  CAS  Google Scholar 

  51. Katsura M, Hara A, Higo A, Tarumi C, Hibino Y, Ohkuma S: Continuous treatment with morphine increases diazepam binding inhibitor mRNA in mouse brain. Journal of Neurochemistry 71: 2638–2641, 1998

    Article  PubMed  CAS  Google Scholar 

  52. Miyata M, Mocchetti I, Ferrarese C, Guidotti A, Costa E: Protracted treatment with diazepam increases the turnover of putative endogenous ligands for the benzodiazepine/beta-carboline recognition site. Proc Natl Acad Sci USA 84: 1444–1448, 1987

    Article  PubMed  CAS  Google Scholar 

  53. Burgi B, Lichtensteiger W, Schlumpf M: Diazepam-binding inhibitor/acyl-CoA-binding protein mRNA and peripheral benzodiazepine receptor mRNA in endocrine and immune tissues after prenatal diazepam exposure of male and female rats. J Endocrinol 166: 163–171, 2000

    Article  PubMed  CAS  Google Scholar 

  54. Gossett RE, Schroeder F, Gunn JM, Kier AB: Expression of fatty acyl-CoA binding proteins in colon cells: Response to butyrate and transformation. Lipids 32: 577–585, 1997

    Article  PubMed  CAS  Google Scholar 

  55. Katsura M, Takesue M, Shuto K, Mohri Y, Tarumi C, Tsujimura A, Shirotani K, Ohkuma S: NMDA receptor activation enhances diazepam binding inhibitor and its mRNA expressions in mouse cerebral cortical neurons. Brain Res Mol Brain Res 88: 161–165, 2001

    Article  PubMed  CAS  Google Scholar 

  56. Toranzo D, Tong Y, Tonon MC, Vaudry H, Pelletier G: Localization of diazepam-binding inhibitor and peripheral type benzodiazepine binding sites in the rat ovary. Anat Embryol (Berl) 190: 383–388, 1994

    CAS  Google Scholar 

  57. Bovolin P, Schlichting J, Miyata M, Ferrarese C, Guidotti A, Alho H: Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul Pept 29: 267–281, 1990

    Article  PubMed  CAS  Google Scholar 

  58. Alho H, Vaalasti A, Podkletnova I, Rechardt L: Expression of diazepam-binding inhibitor peptide in human skin: an immunohistochemical and ultrastructural study. J Invest Dermatol 101: 800–803, 1993

    Article  PubMed  CAS  Google Scholar 

  59. Steyaert H, Tonon MC, Tong Y, Smihrouet F, Testart J, Pelletier G, Vaudry H: Distribution and characterization of endogenous benzodiazepine receptor ligand (endozepine)-like peptides in the rat gastrointestinal tract. Endocrinology 129: 2101–2109, 1991

    PubMed  CAS  Google Scholar 

  60. Yanase H, Shimizu H, Kanda T, Fujii H, Iwanaga T: Cellular localization of the diazepam binding inhibitor (DBI) in the gastrointestinal tract of mice and its coexistence with the fatty acid binding protein (FABP). Arch Histol Cytol 64: 449–460, 2001

    Article  PubMed  CAS  Google Scholar 

  61. Yanase H, Shimizu H, Yamada K, Iwanaga T: Cellular localization of the diazepam binding inhibitor in glial cells with special reference to its coexistence with brain-type fatty acid binding protein. Arch Histol Cytol 65: 27–36, 2002

    Article  PubMed  CAS  Google Scholar 

  62. Franch J, Andersen JL, Jensen J, Pedersen PK, Knudsen J: Acyl-coenzyme A binding protein expression is fibre-type specific in rat skeletal muscle but not affected by moderate endurance training. Pflugers Archiv-European Journal of Physiology 443: 387–393, 2002

    Article  PubMed  CAS  Google Scholar 

  63. Franch J, Knudsen J, Ellis BA, Pedersen PK, Cooney GJ, Jensen J: Acyl-CoA binding protein expression is fiber type-specific and elevated in muscles from the obese insulin-resistant Zucker rat. Diabetes 51: 449–454, 2002

    Article  PubMed  CAS  Google Scholar 

  64. Mogensen IB, Schulenberg H, Hansen HO, Spener F, Knudsen J: A novel acyl-CoA-binding protein from bovine liver. Effect on fatty acid synthesis. Biochem J 241: 189–192, 1987

    PubMed  CAS  Google Scholar 

  65. Schultz R, Pelto Huikko M, Alho H: Expression of diazepam binding inhibitor-like immunoreactivity in rat testis is dependent on pituitary hormones. Endocrinology 130: 3200–3206, 1992

    Article  PubMed  CAS  Google Scholar 

  66. Kolmer M, Roos C, Tirronen M, Myohanen S, Alho H: Tissue-specific expression of the diazepam-binding inhibitor in Drosophila melanogaster: cloning, structure, and localization of the gene. Mol Cell Biol 14: 6983–6995, 1994

    PubMed  CAS  Google Scholar 

  67. Snyder MJ, Antwerpen RV: Cellular distribution, levels, and function of the diazepam-binding inhibitor/acyl-CoA-binding protein in last instar Manduca sexta midgut. Cell Tissue Res 288: 177–184, 1997

    Article  PubMed  CAS  Google Scholar 

  68. Snyder MJ, Van Antwerpen R: Evidence for a diazepam-binding inhibitor (DBI) benzodiazepine receptor- like mechanism in ecdysteroidogenesis by the insect prothoracic gland. Cell Tissue Res 294: 161–168, 1998

    Article  PubMed  CAS  Google Scholar 

  69. Matsumoto S, Yoshiga T, Yokoyama N, Iwanaga M, Koshiba S, Kigawa T, Hirota H, Yokoyama S, Okano K, Mita K, Shimada T, Tatsuki S: Characterization of acyl-CoA-binding protein (ACBP) in the pheromone gland of the silkworm, Bombyx mori. Insect Biochem Mol Biol 31: 603–609, 2001

    Article  PubMed  CAS  Google Scholar 

  70. Rheaume E, Tonon MC, Smih F, Simard J, Desy L, Vaudry H, Pelletier G: Localization of the endogenous benzodiazepine ligand octadecaneuropeptide in the rat testis. Endocrinology 127: 1986–1994, 1990

    Article  PubMed  CAS  Google Scholar 

  71. Helledie T, Antonius M, Sorensen RV, Hertzel AV, Bernlohr DA, Kolvraa S, Kristiansen K, Mandrup S: Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res 41: 1740–1751, 2000

    PubMed  CAS  Google Scholar 

  72. Chao H, Zhou M, McIntosh A, Schroeder F, Kier AB: ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT. J Lipid Res 44: 72–83, 2003

    Article  PubMed  CAS  Google Scholar 

  73. Rasmussen JT, Rosendal J, Knudsen J: Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Biochem J 292 (Pt 3): 907–913, 1993

  74. Fox SR, Hill LM, Rawsthorne S, Hills MJ: Inhibition of the glucose-6-phosphate transporter in oilseed rape (Brassica napus L.) plastids by acyl-CoA thioesters reduces fatty acid synthesis. Biochem J 352(Pt 2): 525–532, 2000

    Google Scholar 

  75. Fox SR, Akpinar A, Prabhune AA, Friend J, Ratledge C: The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-Hydroxy-9Z,12Z-octadecadienoic acid. Lipids 35: 23–30, 2000

    Article  PubMed  CAS  Google Scholar 

  76. Fulceri R, Nori A, Gamberucci A, Volpe P, Giunti R, Benedetti A: Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Calcium 15: 109–116, 1994

    Article  PubMed  CAS  Google Scholar 

  77. Dumonteil E, Barre H, Meissner G: Sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor in cold-acclimated ducklings and thermogenesis. Am J Physiol 265: C507–C513, 1993

    PubMed  CAS  Google Scholar 

  78. Dumonteil E, Barre H, Meissner G: Effects of palmitoyl carnitine and related metabolites on the avian Ca(2+)-ATPase and Ca2+ release channel. J Physiol 479(Pt 1): 29 –39, 1994

    Google Scholar 

  79. Fulceri R, Knudsen J, Giunti R, Volpe P, Nori A, Benedetti A: Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. Biochem J 325(Pt 2): 423 –428, 1997

    Google Scholar 

  80. Melloni E, Averna M, Salamino F, Sparatore B, Minafra R, Pontremoli S: Acyl-CoA-binding protein is a potent m-calpain activator. J Biol Chem 275: 82–86, 2000

    Article  PubMed  CAS  Google Scholar 

  81. McDonough VM, Stukey JE, Martin CE: Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 267: 5931–5936, 1992

    PubMed  CAS  Google Scholar 

  82. Choi JY, Stukey J, Hwang SY, Martin CE: Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 271: 3581–3589, 1996

    Article  PubMed  CAS  Google Scholar 

  83. Petrescu AD, Payne HR, Boedecker A, Chao H, Hertz R, Bar-Tana J, Schroeder F, Kier AB: Physical and functional interaction of Acyl-CoA-binding protein with hepatocyte nuclear factor-4 alpha. J Biol Chem 278: 51813–51824, 2003

    Article  PubMed  CAS  Google Scholar 

  84. Bhuiyan AK, Pande SV: Carnitine palmitoyltransferase activities: effects of serum albumin, acyl-CoA binding protein and fatty acid binding protein. Mol Cell Biochem 139: 109–116, 1994

    Article  PubMed  CAS  Google Scholar 

  85. Abo-Hashema KA, Cake MH, Lukas MA, Knudsen J: The interaction of acyl-CoA with acyl-CoA binding protein and carnitine palmitoyltransferase I. Int J Biochem Cell Biol 33: 807–815, 2001

    Article  PubMed  CAS  Google Scholar 

  86. Dunphy JT, Schroeder H, Leventis R, Greentree WK, Knudsen JK, Silvius JR, Linder ME: Differential effects of acyl-CoA binding protein on enzymatic and non-enzymatic thioacylation of protein and peptide substrates. Biochim Biophys Acta 1485: 185–198, 2000

    PubMed  CAS  Google Scholar 

  87. Faergeman NJ, Knudsen J: Acyl-CoA binding protein is an essential protein in mammalian cell lines. Biochem J 368: 679–682, 2002

    Article  PubMed  CAS  Google Scholar 

  88. Milne KG, Guther ML, Ferguson MA: Acyl-CoA binding protein is essential in bloodstream form Trypanosoma brucei. Mol Biochem Parasitol 112: 301–304, 2001

    Article  PubMed  CAS  Google Scholar 

  89. Rose TM, Schultz ER, Todaro GJ: Molecular cloning of the gene for the yeast homolog (ACB) of diazepam binding inhibitor/endozepine/acyl-CoA-binding protein. Proc Natl Acad Sci USA 89: 11287–11291, 1992

    Article  PubMed  CAS  Google Scholar 

  90. Schjerling CK, Hummel R, Hansen JK, Borsting C, Mikkelsen JM, Kristiansen K, Knudsen J: Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae. J Biol Chem 271: 22514–22521, 1996

    Article  PubMed  CAS  Google Scholar 

  91. Mandrup S, Jepsen R, Skott H, Rosendal J, Hojrup P, Kristiansen K, Knudsen J: Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J 290: 369–374, 1993

    PubMed  CAS  Google Scholar 

  92. Fyrst H, Knudsen J, Schott MA, Lubin BH, Kuypers FA: Detection of acyl-CoA-binding protein in human red blood cells and investigation of its role in membrane phospholipid renewal. Biochem J 306(Pt 3): 793–799, 1995

    Google Scholar 

  93. Kannan L, Knudsen J, Jolly CA: Aging and acyl-CoA binding protein alter mitochondrial glycerol-3-phosphate acyltransferase activity. Biochim Biophys Acta 1631: 12–16, 2003

    PubMed  CAS  Google Scholar 

  94. Jolly CA, Wilton DC, Schroeder F: Microsomal fatty acyl-CoA transacylation and hydrolysis: fatty acyl-CoA species dependent modulation by liver fatty acyl-CoA binding proteins. Biochim Biophys Acta 1483: 185–197, 2000

    PubMed  CAS  Google Scholar 

  95. Gossett RE, Edmondson RD, Jolly CA, Cho TH, Russell DH, Knudsen J, Kier AB, Schroeder F: Structure and function of normal and transformed murine acyl-CoA binding proteins. Arch Biochem Biophys 350: 201–213, 1998

    Article  PubMed  CAS  Google Scholar 

  96. Mandrup S, Sorensen RV, Helledie T, Nohr J, Baldursson T, Gram C, Knudsen J, Kristiansen K: Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA. J Biol Chem 273: 23897–23903, 1998

    Article  PubMed  CAS  Google Scholar 

  97. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A: Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29: 291–325, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils J. Færgeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Færgeman, N.J., Wadum, M., Feddersen, S. et al. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol Cell Biochem 299, 55–65 (2007). https://doi.org/10.1007/s11010-005-9040-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9040-3

Keywords

Navigation