Skip to main content
Log in

Role of MMP-2 in inhibiting Na+ dependent Ca2+ uptake by H2O2 in microsomes isolated from pulmonary smooth muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Treatment of microsomes (preferentially enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with H2O2 (1 mM) markedly stimulated matrix metalloproteinase activity and also inhibited Na+ dependent Ca2+ uptake. Electron micrograph revealed that H2O2 (1 mM) does not cause any damage to the microsomes. MMP-2 and TIMP-2 were determined to be the ambient protease and corresponding antiprotease of the microsomes. Pretreatment with vitamin E (1 mM) and TIMP-2 (50 μg/ml) reversed the effect produced by H2O2 (1 mM) on Na+ dependent Ca2+ uptake in the microsomes. However, H2O2 (1 mM) caused changes in MMP-2 activity and Na+ dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 μg/ml of TIMP-2 which otherwise reversed MMP-2 (1 μg/ml) mediated increase in 14C-gelatin degradation and inhibition of Na+ dependent Ca2+ uptake. Combined treatment of the microsomes with a low dose of MMP-2 (0.5 μg/ml) and H2O2 (0.5 mM) inhibited Na+ dependent Ca2+ uptake in the microsomes compared to the respective low dose of either of them. Direct treatment of TIMP-2 (5 μg/ml) with H2O2 (1 mM) abolished the inhibitory effect of the inhibitor on 14C-gelatinolytic activity elicited by 1 μg/ml of MMP-2. Thus, one of the mechanisms by which H2O2 activates MMP-2 could be due to inactivation of TIMP-2 by the oxidant. The resulting activation of MMP-2 subsequently inhibits Na+ dependent Ca2+ uptake in the microsomes. (Mol Cell Biochem 270: 79–87, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborti T, Das S, Mandal M, Roychoudhury S, Chakraborti S: Oxidant, mitochondria and calcium: An overview. Cell Signal 10: 675–683, 1999

    Google Scholar 

  2. Chakraborti T, Ghosh SK, Michael JR, Batabyal SK, Chakraborti S: Targets of oxidative stress in the cardiovascular system. Mol Cell Biochem 187: 1–10, 1998

    Google Scholar 

  3. Chakraborti T, Das S, Mandal M, Mandal A, Chakraborti S: Ca2+ dynamics under oxidant stress in the cardiovascular system. In: K.B. Storey, J.M. Storey (eds). Cellular and Molecular Responses to Stress, Vol 2, Elsevier Science, New York, 2002, pp 213–228

    Google Scholar 

  4. Bose R, Li Y, Roberts D: Na+/Ca2+ exchange in activated and non activated human platelets. Ann NY Acad Sci 976: 350–353, 2002

    Google Scholar 

  5. Golovina VA, Blaustein MP: Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275: 1643–1648, 1997

    Google Scholar 

  6. Ghosh SK, Chakraborti T, Michael JR, Chakraborti S: Oxidant-mediated proteolytic activation of Ca2+ATPase in microsomes of pulmonary smooth muscle. FEBS Lett 387: 171–174, 1996

    Google Scholar 

  7. Piper HM, Siegmund B, Ladilov YV, Schluter KD: Calcium and sodium control in hypoxic reoxygenated cardiomyocytes. Basic Res Cardiol 88: 471–482, 1993

    Google Scholar 

  8. Kimura J, Watanabe Y, Li L, Watano T: Pharmacology of Na+/Ca2+ exchanger. Ann NY Acad Sci 976: 513–519, 2002

    Google Scholar 

  9. Li JM, Kimura J: Translocation mechanism of cardiac Na-Ca exchange. Ann NY Acad Sci 639: 48–60, 1991

    Google Scholar 

  10. Li JM, Kimura J: Translocation mechanism of Na-Ca exchange in single cardiac cells of guinea pig. J Gen Physiol 96: 777–788, 1990

    Google Scholar 

  11. Barry WH, Rasmussen CAF Jr, Ishida H, Bridge JHB: External Na+ independent Ca2+ extrusion in cultured ventricular cells. Magnitude and functional significance. J Gen Physiol 88: 393–411, 1986

    Google Scholar 

  12. Dhalla NS, Panagia V, Singhal PK, Makino M, Dixon IMC, Eyolfson DA: Alterations in heart membrane calcium transport during the development of ischemic-reperfusion injury. J Mol Cell Cardiol 20 (Suppl 2): 3–13, 1988

    Google Scholar 

  13. Reeves JP, Bailey CA, Hale CC: Redox modifications of sodium calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 259: 7733–7739, 1984

    Google Scholar 

  14. Halliwell B, Gutteridge JMC: Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 186: 1–86, 1990

    Google Scholar 

  15. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D: Oxygen radicals and human disease. Ann Intern Med 107: 526–545, 1987

    Google Scholar 

  16. Fantone JC, Ward PA: Role of oxygen derived free radicals and metabolites in leukocyte dependent inflammatory reactions. Am J Pathol 107: 395–418, 1982

    Google Scholar 

  17. Burghuber OC, Strife RJ, Zirrolli J, Henson PM, Henson JE, Mathias MM, Reeves JT, Murphy RC, Voelkel NF: Leukotriene inhibitors attenuate rat lung injury induced by hydrogen peroxide. Am Rev Respir Dis 131: 778–785, 1985

    Google Scholar 

  18. Seeger W, Wolf H, Moser V, Neuhof H, Roka L: Influence of aprotinin and gabexate mesylate on arachidonic acid release by the calcium ionophore A23187 in the lung. Adv Exp Med Biol 156: 553–567, 1983

    Google Scholar 

  19. Ramchandran R, Kasturi S, Douglas JG, Sen I: Metalloprotease-mediated cleavage secretion of pulmonary ACE by vascular endothelial and kidney epithelial cells. Am J Physiol 271: H744–H751, 1996

    Google Scholar 

  20. Fernandez-Patron C, Zonki C, Whitta R, Chan JS, Davidge ST, Filef JG: Matrix metalloproteinases regulate neutrophil endothelial cell adhesion through generation of endothelin-1. FASEB J 15: 2230–2240, 2001

    Google Scholar 

  21. Chen M, Zhang Z, Tawiah Boateng MA, Hardwicke PM: A Ca2+ dependent tryptic cleavage site and a protein kinase A phosphorylation site are present in the Ca2+ regulatory domain of scallop muscle Na+/Ca2+ exchanger. J Biol Chem 275: 22961–22968, 2000

    Google Scholar 

  22. Lehotsky J, Kaplan P, Makjovicova M, Murin R, Recay P, Racymaekers L: Ion transport systems as targets of free radicals during ischemia-reperfusion injury. Gen Physiol Biophys 21: 31–37, 2002

    Google Scholar 

  23. Bond JS, Butler PE: Intracellular proteases. Ann Rev Biochem 56: 333–364, 1987

    Google Scholar 

  24. Melligren RL, Meriele MT, Lane RD: Proteolysis of the calcium dependent protease inhibitor by myocardial calcium dependent protease. Arch Biochem Biophys 246: 233–239, 1980

    Google Scholar 

  25. Farrukh IS, Michael JR, Summers W, Adkinson NF, Gurtner GH: Oxidant-mediated pulmonary vasoconstriction: Involvement of calcium. J Appl Physiol 58: 34–44, 1985

    Google Scholar 

  26. Chakraborti T, Ghosh SK, Michael JR, Chakraborti S: Role of aprotinin sensitive protease in the stimulation of Ca2+ATPase by superoxide radical in microsomes of pulmonary smooth muscle. Biochem J 317: 885–890, 1996

    Google Scholar 

  27. Baudhuin P: Morphometry of subcellular fractions. In: Methods Enzymology, Vol 32 (Part B), Academic Press, New York, 1974, pp 3–20

    Google Scholar 

  28. Karmakar S, Ghosh AN, Dey D, Nair GB, Ganguly U: Ultrastructural changes in He La cells associated with enteroadherent Escherichia Coli isolated from infants with diarrhoea in Calcutta. J Diarrhoeal Dis Res 12: 274–278, 1994

    Google Scholar 

  29. Towbin H, Staehlin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci (USA) 76: 4350–4354, 1979

    Google Scholar 

  30. Billings PC, Habres JM, Liao DC, Tuttle SW: Human fibroblasts contain a proteolytic activity which is inhibited by the Bowman-Burk protease inhibitor. Cancer Res 51: 5539–5543, 1991

    Google Scholar 

  31. Brown PD, Kleiner DE, Unsworth EJ, Stetler-Stevenson WG: Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex. Kidney Int 43: 163–170, 1993

    Google Scholar 

  32. Dixon IMC, Kaneko M, Hata T, Panagia V, Dhalla NS: Alterations in cardiac membrane calcium transport during oxidative stress. Mol Cell Biochem 99: 125–133, 1990

    Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with folin-phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  34. David WW: Biostatistics: A foundation for analysis in health science, Wiley, New York, 1978, p. 219

    Google Scholar 

  35. Bellavite P, Corso F, Dusi S, Grzeskowiak M, Della-Bianca V, Rossi F: Activation of NADPH-dependent superoxide production in plasma membrane extracts of pig neutrophils by phosphatidic acid. J Biol Chem 263: 8210–8214, 1988

    Google Scholar 

  36. Patterson CE, Jin N, Packer CS, Rhoades RA: Activated neutrophils alter contractile properties of the pulmonary artery. Am J Respir Cell Mol Biol 6: 260–269, 1992

    Google Scholar 

  37. Phan SH, Gannon DE, Ward PA, Karmiol S: Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: Evidence of a role for elastase. Am J Respir Cell Mol Biol 6: 270–278, 1992

    Google Scholar 

  38. Kettle AJ, Winterbourn CC: Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol 41: 1485–1492, 1991

    Google Scholar 

  39. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW: Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol 144: 2702–2711, 1990

    Google Scholar 

  40. Grisham MB, Gaginella TS, von Ritter C, Tamai H, Be RM, Granger DN: Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation 14: 531–542, 1990

    CAS  PubMed  Google Scholar 

  41. Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB, Taylor AA, Smith CW: Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 90: 1335–1345, 1992

    Google Scholar 

  42. Suzuki M, Asako H, Kubes P, Jennings S, Grisham MB, Granger DN: Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 42: 125–138, 1991

    Google Scholar 

  43. Goldhaber JL: Free radicals enhance Na/Ca exchange in ventricular myocytes. Am J Physiol 271: H823–H833, 1996

    Google Scholar 

  44. Chakraborti S, Michael JR: Involvement of serine esterase in the oxidant-mediated activation of phospholipase A2 in pulmonary endothelium. FEBS Lett 281: 185–187, 1991

    Google Scholar 

  45. Doan TN, Gentry DL, Taylor A, Elliott SJ: Hydrogen peroxide activates agonist stimulated Ca2+ flux pathways in canine venous endothelial cells. Biochem J 297: 209–215, 1994

    Google Scholar 

  46. Lewis MS, Whatley RE, Cain P, McIntyre TM, Prescott SM, Zimmerman GA: Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest 82: 2045–2055, 1988

    Google Scholar 

  47. Murphy G, Gavrilovic J: Proteolysis and cell migration: Creating a path? Curr Opin Cell Biol 11: 614–621, 1999

    Google Scholar 

  48. Frisdal E, Gest V, Vieeillard-Baron A, Levame M, Lepilit H, Eddahibi S, Lafuma C, Harf A, Adnot S, Dortho MP: Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir J 18: 838–845, 2001

    Google Scholar 

  49. Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A: Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 90: 784–791, 2002

    Google Scholar 

  50. Hook VYH, Azaryan AV, Hwang SR, Tezapsidis N: Proteases and the emerging role of protease inhibitors in prohormone processing. FASEB J 8: 1269–1278, 1994

    Google Scholar 

  51. Michael JR, Yang J, Farrukh IS, Gurtner GH: Protein kinase C-mediated pulmonary vasoconstriction in rabbit: Role of Ca2+, AA metabolites and vasodilators. J Appl Physiol 74: 1310–1319, 1993

    Google Scholar 

  52. Farrukh IS, Michael JR, Peters SP, Sciuto AM, Adkinson NFJ, Freeland HS, Paky A, Spannhake EW, Summer WR, Gurtner GH: The role of cyclooxygenase and lipoxygenase mediators in oxidant induced lung injury. Am Rev Respir Dis 137: 1343–1350, 1988

    Google Scholar 

  53. White RP: Pharmacodynamic effects of tosyl arginine methylester (TAME) on isolated human arteries. J Gen Physiol 19: 387–392, 1988

    Google Scholar 

  54. Lee KM, Tsai KY, Wang N, Ingber DE: Extracellular matrix and pulmonary hypertension: Control of vascular smooth muscle cell contractility. Am J Physiol 274: H76–H82, 1998

    Google Scholar 

  55. Libby P: Molecular basis of acute coronary syndrome. Circulation 91: 2844–2850, 1995

    CAS  PubMed  Google Scholar 

  56. Ross R: Atherosclerosis: An inflammatory disease. N Engl J Med 340: 115–126, 1999

    Article  CAS  PubMed  Google Scholar 

  57. Shabani F, McNeil J, Tippett L: The oxidative inactivation of tissue inhibitor of metalloproteinase-1 by hypochlorous acid (HOCl) is suppressed by anti-rheumatic drugs. Free Radic Res 28: 115–123, 1998

    Google Scholar 

  58. Yin D, Kuczera K, Squier TC: The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H2O2 modulates the ability to activate the plasma membrane ATPase. Chem Res Toxicol 13: 103–110, 2000

    Google Scholar 

  59. Qu Y, Torchia J, Sen AK: Protein kinase C-mediated activation and phosphorylation of Ca2+ pump in cardiac sarcolemma. Can J Physiol Pharmacol 70: 1230–1235, 1992

    Google Scholar 

  60. Neyses L, Reinlib L, Carafoli E: Phosphorylation of the Ca2+ pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP dependent protein kinase. J Biol Chem 260: 10283–10287, 1985

    Google Scholar 

  61. Yoshida Y, Toyosato A, Islam MU, Koga T, Fujita S, Imai S: Stimulation of plasma membrane Ca2+ pump ATPase of vascular smooth muscle by cGMP dependent protein kinase. Functional reconstitution with purified proteins. Mol Cell Biochem 190: 157–167, 1999

    Google Scholar 

  62. Thomas NJ, Carcillo JA, Herzer WA, Mi Z, Tofovic SP, Jackson EK: Type IV phosphodiesterase inhibition improves cardiac contractility in endotoxemic rats. Eur J Pharmacol 465: 133–139, 2003

    Google Scholar 

  63. Murray F, Maclean MR, Pyne NJ: Increased expression of the cGMP inhibited cAMP specific PDE3 and cGMP binding cGMP specific PDE5 phosphodiesterase in models of pulmonary hypertension. Br J Pharmacol 137: 1187–1194, 2002

    Google Scholar 

  64. Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK: Human heart failure: cAMP stimulation of SR Ca2+ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277: H 474–H480, 1999

    Google Scholar 

  65. Xu A, Narayanan N: Ca2+-calmodulin dependent phosphorylation of the Ca2+ATPase, uncoupled from phospholamban stimulates Ca2+ pump in native cardiac sarcoplasmic reticulum. Biochim Biophys Res Commun 258: 66–72, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A., Chakraborti, T., Choudhury, R. et al. Role of MMP-2 in inhibiting Na+ dependent Ca2+ uptake by H2O2 in microsomes isolated from pulmonary smooth muscle. Mol Cell Biochem 270, 79–87 (2005). https://doi.org/10.1007/s11010-005-5260-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-5260-9

Key words

Navigation