Skip to main content
Log in

Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Eosinophil cationic protein (ECP) is a ribonuclease secreted from activated eosinophils that may cause tissue injure as a result of eosinophilic inflammation. ECP possesses bactericidal, antiviral and helminthotoxic activity and inhibits mammalian cell growth. The mechanism by which ECP exerts its toxicity is not known but it has been related to the ability of the protein to destabilise lipid bilayers. We have assessed the involvement of some cationic and aromatic surface exposed residues of ECP in the inhibition of proliferation of mammalian cell lines. We have constructed ECP mutants for the selected residues and assessed their ability to prevent cell growth. Trp10 and Trp35 together with the adjacent stacking residue are critical for the damaging effect of ECP on mammalian cell lines. These residues are also crucial for the membrane disruption activity of ECP. Other exposed aromatic residues packed against arginines (Arg75-Phe76 and Arg121-Tyr122) and specific cationic amino acids (Arg101and Arg104) of ECP play a secondary role in the cell growth inhibition. This may be related to the ability of the protein to bind carbohydrates such as those found on the surface of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters MS, Rodriguez M, Gleich GJ: Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Investig 54: 656–662, 1986

    CAS  PubMed  Google Scholar 

  2. Giembycz MA, Lindsay MA: Pharmacology of the eosinophil. Pharmacol Rev 51: 213–339, 1999

    CAS  PubMed  Google Scholar 

  3. Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR, Gleich GJ: Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143: 952–955, 1989

    CAS  PubMed  Google Scholar 

  4. Boix E, Leonidas DD, Nikolovski Z, Nogués MV, Cuchillo CM, Acharya, KR: Crystal structure of eosinophil cationic protein at 2.4 Å resolution. Biochemistry 38: 16794–16801, 1999

    Article  CAS  PubMed  Google Scholar 

  5. Sorrentino S, Glitz DG: Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP). FEBS Lett 288: 23–26, 1991

    Article  CAS  PubMed  Google Scholar 

  6. Boix E, Nikolovski Z, Moiseyev GP, Rosenberg HF, Cuchillo CM, Nogués MV: Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J Biol Chem 274: 15605–15614, 1999

    Article  CAS  PubMed  Google Scholar 

  7. Venge P: Monitoring the allergic inflammation. Allergy 59: 26–32, 2004

    Article  CAS  PubMed  Google Scholar 

  8. Venge P, Byström J, Carlson M, Håkansson L, Karawacjzyk M, Peterson C, Sevéus L, Trulson A: Eosinophil cationic protein (ECP): Molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29: 1172–1186, 1999

    Article  CAS  PubMed  Google Scholar 

  9. Tai PC, Hayes DJ, Clark JB, Spry CJF: Toxic effects of human eosinophil products on isolated rat heart cells in vitro. Biochem J 204: 75–80, 1982

    CAS  PubMed  Google Scholar 

  10. Tai PC, Ackerman SJ, Spry CJF, Dunnette S, Olsen EGJ, Gleich GJ: Toxic effects of human eosinophil products on isolated rat heart cells in vitro. Lancet 21: 643–647, 1987

    Article  Google Scholar 

  11. Fredens K, Dybdahl H, Dahl R, Baandrup U: Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage. APMIS 96: 711–719, 1988

    CAS  PubMed  Google Scholar 

  12. Motojima S, Frigas E, Loegering DA, Gleich GJ: Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139: 801–805, 1989

    CAS  PubMed  Google Scholar 

  13. Fredens K, Dahl R, Venge P: The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol 70: 361–366, 1982

    CAS  PubMed  Google Scholar 

  14. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ: Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142: 4428–4434, 1989

    CAS  PubMed  Google Scholar 

  15. McLaren DJ, Peterson CGB, Venge P: Schistosoma mansoni: Further studies of the interaction between schistosomula and granulocyte-derived cationic proteins in vitro. Parasitology 88: 491–503, 1984

    CAS  PubMed  Google Scholar 

  16. Molina HA, Kierszenbaum F, Hamann KJ, Gleich GJ: Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am J Trop Med Hyg 38: 327–384, 1988

    CAS  PubMed  Google Scholar 

  17. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL: In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144: 3166–3173, 1990

    CAS  PubMed  Google Scholar 

  18. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF: Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 24: 3507–3513, 1998

    Google Scholar 

  19. Peterson CGB, Skoog V, Venge P: Human eosinophil cationic proteins (ECP and EPX) and their suppressive effects on lymphocyte proliferation. Immunobiology 171: 1–13, 1986

    CAS  PubMed  Google Scholar 

  20. Kimata H, Yoshida A, Ishioka C, Jiang Y, Mikawa H: Eosinophil cationic protein inhibits immunoglobulin production and proliferation in vitro in human plasma cells. Cell Immunol 141: 422–432, 1992

    Article  CAS  PubMed  Google Scholar 

  21. Maeda T, Kitazoe M, Tada H, Llorens R, Salomon DS, Ueda M, Yamada H, Seno M: Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269: 307–316, 2002

    Article  CAS  PubMed  Google Scholar 

  22. Slifman NR, Loegering DA, McKean DJ, Gleich GJ: Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137: 2913–2917, 1986

    CAS  PubMed  Google Scholar 

  23. Gullberg U, Widegren B, Arnason U, Egesten A, Olsson I: The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem Biophys Res Commun 139: 1239–1242, 1986.

    CAS  PubMed  Google Scholar 

  24. Young JD, Peterson CG, Venge P, Cohn ZA: Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321: 613–616, 1986

    Article  CAS  PubMed  Google Scholar 

  25. Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogués MV: Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42: 6636–6644, 2003

    Article  CAS  PubMed  Google Scholar 

  26. Sorrentino S, Glitz DG, Hamann KJ, Loegering DA, Checkel JL, Gleich GJ: Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J Biol Chem 267: 14859–14865, 1992

    CAS  PubMed  Google Scholar 

  27. Rosenberg HF: Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270: 7876–7881, 1995

    Article  CAS  PubMed  Google Scholar 

  28. Hohlfeld, JM, Schmiedl, A, Erpenbeck VJ, Venge P, Krug N: Eosinophil cationic protein alters pulmonary surfactant structure and function in asthma. J Allergy Clin Immunol 113: 496–502, 2004

    Article  CAS  PubMed  Google Scholar 

  29. Laccetti P, Portella G, Mastronicola MR, Russo A, Piccoli R, D’Alessio G, Vecchio G: In vivo and in vitro growth-inhibitory effect of bovine seminal ribonuclease on a system of rat thyroid epithelial transformed cells and tumors. Cancer Res 52: 4582–4586, 1992

    CAS  PubMed  Google Scholar 

  30. Futami J, Maeda T, Kitazoe M, Nukui E, Tada H, Seno M, Kosaka M, Yamada H: Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry 40: 7518–7524, 2001

    CAS  PubMed  Google Scholar 

  31. Zhang J, Rosenberg, HF: Sequence variation at two epsinophil-associated ribonuclease loci in humans. Genetics 156: 1949–1958, 2000

    CAS  PubMed  Google Scholar 

  32. Jönsson UB, Byström J, Stålenheim G, Venge P: Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy 32: 1092–1095, 2002

    Article  PubMed  Google Scholar 

  33. Hayashida M, Fujii T, Hamasu M, Ishiguro M, Hata Y: Similarity between protein-protein and protein-carbohydrate interactions, revealed by two crystal structures of lectins from the roots of pokeweed. J Mol Biol 334: 551–565, 2003

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Rosenbergv HF: Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci USA 99: 5486–5491, 2002

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Rozek A, Hancock RE: Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276: 35714–35722, 2001

    Article  CAS  PubMed  Google Scholar 

  36. Ricard-Blum S, Feraud O, Lortat-Jacob H, Rencurosi A, Fukai N, Dkhissi F, Vittet D, Imberty A, Olsen BR, Van Der Rest M: Characterization of endostatin binding to heparin and heparan sulphate by surface plasmon resonance and molecular modeling: role of divalent cations. J Biol Chem 279: 2927–2936, 2004

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa Y, Iwama M, Ohgi K, Tsuji T, Irie M, Itagaki T, Kobayashi H, Inokuchi N: Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. Biol Pharm Bull 25: 722–727, 2002

    Article  CAS  PubMed  Google Scholar 

  38. Kraulis PJ: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950, 1991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Victòria Nogués.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreras, E., Boix, E., Navarro, S. et al. Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 272, 1–7 (2005). https://doi.org/10.1007/s11010-005-4777-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-4777-2

Keywords

Navigation