Skip to main content
Log in

Tail Risk of Multivariate Regular Variation

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Tail risk refers to the risk associated with extreme values and is often affected by extremal dependence among multivariate extremes. Multivariate tail risk, as measured by a coherent risk measure of tail conditional expectation, is analyzed for multivariate regularly varying distributions. Asymptotic expressions for tail risk are established in terms of the intensity measure that characterizes multivariate regular variation. Tractable bounds for tail risk are derived in terms of the tail dependence function that describes extremal dependence. Various examples involving Archimedean copulas are presented to illustrate the results and quality of the bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecher H, Asmussen S, Kortschak D (2006) Tail asymptotics for the sum of two heavy-tailed dependent risks. Extremes 9:107–130

    Article  MathSciNet  MATH  Google Scholar 

  • Alink S, Löwe M, Wüthrich MV (2004) Diversification of aggregate dependent risks. Insurance: Math Econom 35:77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Alink S, Löwe M, Wüthrich MV (2005) Analysis of the expected shortfall of aggregate dependent risks. ASTIN Bull 35(1):25–43

    Article  MathSciNet  MATH  Google Scholar 

  • Alink S, Löwe M, Wüthrich MV (2007) Diversification for general copula dependence. Stat Neerl 61:446–465

    Article  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risks. Math Financ 9:203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Bentahar I (2006) Tail conditional expectation for vector-valued risks. Discussion paper 2006-029, Technische Universität Berlin, Germany. http://sfb649.wiwi.hu-berlin.de

  • Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Cai J, Li H (2005) Conditional tail expectations for multivariate phase-type distributions. J Appl Probab 42:810–825

    Article  MathSciNet  MATH  Google Scholar 

  • Cheridito P, Delbaen F, Klüppelberg C (2004) Coherent and convex monetary risk measures for bounded càdlàg processes. Stoch Process their Appl 112:1–22

    Article  MATH  Google Scholar 

  • Coles SG, Tawn JA (1991) Modelling extreme multivariate events. J R Stat Soc, B 53:377–392

    MathSciNet  MATH  Google Scholar 

  • Cook RD, Johnson ME (1981) A family of distributions for modelling non-elliptically symmetric multivariate data. J R Stat Soc, B 43:210–218

    MathSciNet  MATH  Google Scholar 

  • Delbaen F (2002) Coherent risk measure on general probability spaces. In: Sandmann K, Schönbucher PJ (eds) Advances in finance and stochastics-essays in honour of Dieter Sondermann. Springer-Verlag, Berlin, pp 1–37

    Google Scholar 

  • Embrechts P, Neslehová J, Wüthrich MV (2009) Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness. Insurance: Math Econom 44(2):164–169

    Article  MathSciNet  MATH  Google Scholar 

  • Föllmer H, Schied A(2002) Convex measures of risk and trading constraints. Finance Stoch 6:426–447

    Article  Google Scholar 

  • Joe H (1993) Parametric family of multivariate distributions with given margins. J Multivar Anal 46:262–282

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, London

    MATH  Google Scholar 

  • Joe H, Hu T (1996) Multivariate distributions from mixtures of max-infinitely divisible distributions. J Multivar Anal 57:240–265

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H, Li H, Nikoloulopoulos AK (2010) Tail dependence functions and vine copulas. J Multivar Anal 101:252–270

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H, Smith RL, Weissman I (1992) Bivariate threshold methods for extremes. J R Stat Soc, B 54:171–183

    MathSciNet  MATH  Google Scholar 

  • Jouini E, Meddeb M, Touzi N (2004) Vector-valued coherent risk measures. Finance Stoch 8:531–552

    MathSciNet  MATH  Google Scholar 

  • Klüppelberg C, Kuhn G, Peng L (2008) Semi-parametric models for the multivariate tail dependence function – the asymptotically dependent. Scand J Statist 35(4):701–718

    Article  MathSciNet  MATH  Google Scholar 

  • Kortschak D, Albrecher H (2009) Asymptotic results for the sum of dependent non-identically distributed random variables. Methodol Comput Appl Probab 11:279–306

    Article  MathSciNet  MATH  Google Scholar 

  • Kousky C, Cooke RM (2009) Climate change and risk management: challenges for insurance, adaptation and loss estimation. Discussion paper RFF DP 09-03-Rev, Resources For the Future. http://www.rff.org/RFF/Documents/

  • Landsman Z, Valdez E (2003) Tail conditional expectations for elliptical distributions. N Am Actuar J 7:55–71

    MathSciNet  MATH  Google Scholar 

  • Li H (2009) Orthant tail dependence of multivariate extreme value distributions. J Multivar Anal 100:243–256

    Article  MATH  Google Scholar 

  • Li H, Sun Y, (2009) Tail dependence for heavy-tailed scale mixtures of multivariate distributions. J Appl Probab 46(4):925–937

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV (1962) Multivariate Pareto distributions. Ann Math Stat 33:1008–1015

    Article  MathSciNet  MATH  Google Scholar 

  • McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, and tools. Princeton University Press, Princeton, New Jersey

    MATH  Google Scholar 

  • Nikoloulopoulos AK, Joe H, Li H (2009) Extreme value properties of multivariate t copulas. Extremes 12:129–148

    Article  MathSciNet  MATH  Google Scholar 

  • Resnick S (1987) Extreme values, regular variation, and point processes. Springer, New York

    MATH  Google Scholar 

  • Resnick S (2007) Heavy-tail phenomena: probabilistic and statistical modeling. Springer, New York

    MATH  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    MathSciNet  Google Scholar 

  • Takahasi K (1965) Note on the multivariate Burr’s distribution. Ann Inst Stat Math 17:257–260

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Li.

Additional information

Harry Joe is supported by NSERC Discovery Grant.

Haijun Li is supported in part by NSF grant CMMI 0825960.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joe, H., Li, H. Tail Risk of Multivariate Regular Variation. Methodol Comput Appl Probab 13, 671–693 (2011). https://doi.org/10.1007/s11009-010-9183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-010-9183-x

Keywords

AMS 2000 Subject Classifications

Navigation