Skip to main content
Log in

Q-operators for higher spin eight vertex models with a rational anisotropy parameter

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Q-operators for generalised eight vertex models associated with higher spin representations of the Sklyanin algebra are constructed by Baxter’s first method and Fabricius’s method, when the anisotropy parameter is rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The normalisation of theta functions by Fabricius and McCoy in [13,14,15,16] and that by Sklyanin in [27] differs by a modular transformation. [See the explicit form of the R-matrix, (A.5) in this paper.] Since we use Sklyanin’s normalisation, our cases correspond to \(m_1=0\) in [13, 14].

  2. From the evenness (B.4) of G follows \(t_{m+1}=t_{-m+1}\) by induction. This property is useful when one checks (3.30).

  3. In [11] the size of S(u) is \(r\times r\). In fact, for the construction of \(Q_R\) satisfying (3.20) and \(Q_L\) satisfying (3.23), we can use S(u) of size \(r\times r\) as in [11]. But when we prove the commutation relation (3.24) in Sect. 4.2, we need S(u) of size \(2r\times 2r\).

  4. The normalisations in these papers are different. Here, we normalise as in [31].

References

  1. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I. Ann. Phys. 76, 1–24 (1973)

    Article  ADS  MATH  Google Scholar 

  3. Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Ann. Phys. 76, 25–47 (1973)

    Article  ADS  MATH  Google Scholar 

  4. Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain III. Ann. Phys. 76, 48–71 (1973)

    Article  ADS  MATH  Google Scholar 

  5. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc, London (1982)

    MATH  Google Scholar 

  6. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory II, \(Q\)-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory III. The Yang–Baxter relation. Commun. Math. Phys. 200, 297–324 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bazhanov, V.V., Stroganov, YuG: Chiral Potts model as a descendant of the six-vertex model. J. Stat. Phys. 59, 799–817 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chicherin, D., Derkachov, S., Karakhanyan, D., Kirschner, R.: Baxter operators with deformed symmetry. Nuclear Phys. B 868, 652–683 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chicherin, D., Derkachov, S.E., Spiridonov, V.P.: New elliptic solutions of the Yang–Baxter equation. Commun. Math. Phys. 345, 507–543 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fabricius, K.: A new Q-matrix in the eight-vertex model. J. Phys. A 40, 4075–4086 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164, 2407–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fabricius, K., McCoy, B.M.: New developments in the eight vertex model. J. Stat. Phys. 111, 323–337 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fabricius, K., McCoy, B.M.: ditto II, Chains of odd length. J. Stat. Phys. 120, 37–70 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fabricius, K., McCoy, B.M.: The TQ equation of the eight-vertex model for complex elliptic roots of unity. J. Phys. A 40, 14893–14926 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fabricius, K., McCoy, B.M.: New Q matrices and their functional equations for the eight vertex model at elliptic roots of unity. J. Stat. Phys. 134, 643–668 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Konno, H.: The vertex-face correspondence and the elliptic \(6j\)-symbols. Lett. Math. Phys. 72, 243–258 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mangazeev, V.V.: On the Yang–Baxter equation for the six-vertex model. Nuclear Phys. B 882, 70–96 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mangazeev, V.V.: \(Q\)-operators in the six-vertex model. Nuclear Phys. B 886, 166–184 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Motegi, K.: On Baxter’s Q operator of the higher spin XXZ chain at the Razumov–Stroganov point. J. Math. Phys. 54, 063510 (2013). 13 pp

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics 28, Birkhäuser Boston, Inc. (1983)

  22. Roan, S.-S.: On \(Q\)-operators of XXZ Spin Chain of Higher Spin. arXiv:cond-mat/0702271

  23. Roan, S.-S.: The \(Q\)-operator and functional relations of the eight-vertex model at root-of-unity \(\eta =\frac{2mK}{N}\) for odd \(N\). J. Phys. A 40, 11019–11044 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Rosengren, H.: Sklyanin invariant integration. Int. Math. Res. Not. 60, 3207–3232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosengren, H.: An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic). Ramanujan J. 13, 131–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Funkts. analiz i ego Prilozh. 16–4, 27–34 (1982). (in Russian) (Funct. Anal. Appl. 16, 263–270, 1983) (English translation)

    MathSciNet  Google Scholar 

  27. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras. Funkts. analiz i ego Prilozh. 17–4, 34–48 (1983). (in Russian) (Funct. Anal. Appl. 17, 273–284, 1984) (English translation)(in Russian)

    MathSciNet  MATH  Google Scholar 

  28. Takebe, T.: Generalized Bethe ansatz with the general spin representations of the Sklyanin algebra. J. Phys. A 25, 1071–1083 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Takebe, T.: Bethe ansatz for higher spin eight-vertex models. J. Phys. A28, 6675–6706 (1995). (corrigendum J. Phys. A 29, 1563–1566 (1996))

    ADS  MathSciNet  MATH  Google Scholar 

  30. Takebe, T.: Bethe ansatz for higher-spin XYZ models—low-lying excitations. J. Phys. A 29, 6961–6966 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Takebe, T.: \(Q\)-operators for higher spin eight vertex models with an even number of sites. Lett. Math. Phys. 106, 319–340 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Takhtajan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Uspekhi Mat. Nauk 34(5), 13–63 (1979). (in Russian); (Russian Math. Surveys 34(5), 11–68, 1979) (English translation)

    MathSciNet  Google Scholar 

  33. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  34. Zabrodin, A.: Commuting difference operators with elliptic coefficients from Baxter’s vacuum vectors. J. Phys. A 33, 3825–3850 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to Hitoshi Konno, Kohei Motegi for discussions and encouragement and to Klaus Fabricius for informing references. The author is grateful to Rikkyo University and Tokyo University of Marine Science and Technology for their hospitality, where parts of this work were done. This work has been funded by the Russian Academic Excellence Project ‘5–100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Takebe.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Sklyanin algebra

In this Appendix, we recall several facts on the Sklyanin algebra and its representations from [26, 27].

The Sklyanin algebra is an associative algebra generated by four generators \(S^a\) (\(a=0,\ldots ,3\)) subject to the following relations:

$$\begin{aligned} L_{12}(v) L_{13}(u) R_{23}(u-v) = R_{23}(u-v) L_{13}(u) L_{12}(v). \end{aligned}$$
(A.1)

Here, the symbols are defined as follows:

  • the L-operatorL(u) with a complex parameter u is defined by

    $$\begin{aligned} L(u) = \sum _{a=0}^3 W_a^L(u) S^a \otimes \sigma ^a, \end{aligned}$$
    (A.2)

    where

    $$\begin{aligned} \begin{aligned} W_0^L(u)&= \frac{\theta _{11}(u,\tau )}{\theta _{11}(\eta ,\tau )},&W_1^L(u)&= \frac{\theta _{10}(u,\tau )}{\theta _{10}(\eta ,\tau )},\\ W_2^L(u)&= \frac{\theta _{00}(u,\tau )}{\theta _{00}(\eta ,\tau )},&W_3^L(u)&= \frac{\theta _{01}(u,\tau )}{\theta _{01}(\eta ,\tau )}. \end{aligned} \end{aligned}$$
    (A.3)
  • The matrix R(u) is Baxter’s R-matrix defined by

    $$\begin{aligned} R(u) = \sum _{a=0}^3 W_a^R(u) \sigma ^a \otimes \sigma ^a,\qquad W_a^R(u) := W_a^L(u + \eta ). \end{aligned}$$
    (A.4)

    Explicitly, it has the form (cf. [29] “Appendix A”)

    $$\begin{aligned} R(u) = \begin{pmatrix} a(u) &{}\quad 0 &{}\quad 0 &{}\quad d(u)\\ 0 &{}\quad b(u) &{}\quad c(u) &{}\quad 0 \\ 0 &{}\quad c(u) &{}\quad b(u) &{}\quad 0 \\ d(u) &{}\quad 0 &{}\quad 0 &{}\quad a(u) \end{pmatrix}, \end{aligned}$$
    (A.5)

    where

    $$\begin{aligned} a(u)&= C \theta _{01}(2it\eta ,2it)\,\theta _{01}(itu,2it) \,\theta _{11}(it(u+2\eta ),2it) \\ b(u)&= C \theta _{01}(2it\eta ,2it)\,\theta _{11}(itu,2it) \,\theta _{01}(it(u+2\eta ),2it) \\ c(u)&= C \theta _{11}(2it\eta ,2it)\,\theta _{01}(itu,2it) \,\theta _{01}(it(u+2\eta ),2it) \\ d(u)&= C \theta _{11}(2it\eta ,2it)\,\theta _{11}(itu,2it) \,\theta _{11}(it(u+2\eta ),2it) \\ C&= \frac{-2 \text {e}^{-\pi t u(u+2\eta )}}{\theta _{01}(0,2it)\, \theta _{01}(2it\eta ,2it)\,\theta _{11}(2it\eta ,2it)},\quad t=\frac{i}{\tau }. \end{aligned}$$
  • The indices designate the spaces on which operators act non-trivially. For example,

    $$\begin{aligned} L_{12}(u) = \sum _{a=0}^3 W_a^L(u) S^a \otimes \sigma ^a \otimes 1,\qquad R_{23}(u) = \sum _{a=0}^3 W_a^R(u) 1 \otimes \sigma ^a \otimes \sigma ^a. \end{aligned}$$

Although the relation (A.1) contains parameters u and v, the commutation relations among \(S^a\) (\(a=0, \dots , 3\)) do not depend on them:

$$\begin{aligned}{}[S^\alpha , S^0 ]_- = -i J_{\alpha ,\beta } [S^\beta ,S^\gamma ]_+, \qquad [S^\alpha , S^\beta ]_- = i [S^0, S^\gamma ]_+, \end{aligned}$$
(A.6)

where \((\alpha , \beta , \gamma )\) stands for an arbitrary cyclic permutation of (1, 2, 3) and \([A,B]_\pm \) are the (anti-)commutator \(AB\pm BA\). The structure constants \( J_{\alpha ,\beta } = ((W^L_\alpha )^2-(W^L_\beta )^2)/((W^L_\gamma )^2-(W^L_0)^2) \) depend on \(\tau \) and \(\eta \) but not on u.

Let l be a positive half integer. The spin l representation\(\rho ^{l}\) of the Sklyanin algebra is defined as follows: The representation space is a space of entire functions,

$$\begin{aligned} \varTheta ^{4l+}_{00}:= & {} \{f(z) \, |\, \nonumber \\ f(z+1)= & {} f(-z) = f(z), f(z+\tau )=\exp ^{-4l\pi i(2z+\tau )}f(z) \}, \end{aligned}$$
(A.7)

which is of dimension \(2l+1\). The generator \(S^a\) of the Sklyanin algebra acts as a difference operator on this space:

$$\begin{aligned} (\rho ^l(S^a) f)(z) = \frac{s_a(z-l\eta )f(z+\eta )-s_a(-z-l\eta )f(z-\eta )}{\theta _{11}(2z,\tau )}, \end{aligned}$$
(A.8)

where

$$\begin{aligned} s_0(z)&= \theta _{11}(\eta ,\tau ) \theta _{11}(2z,\tau ),\quad&s_1(z)&= \theta _{10}(\eta ,\tau ) \theta _{10}(2z,\tau ),\\ s_2(z)&= i\theta _{00}(\eta ,\tau ) \theta _{00}(2z,\tau ),\quad&s_3(z)&= \theta _{01}(\eta ,\tau ) \theta _{01}(2z,\tau ). \end{aligned}$$

In the simplest case \(l= 1/2\), \(\rho ^{1/2}(S^a)\) are expressed by the Pauli matrices \(\sigma ^a\). We can identify \(\varTheta ^{2+}_{00}\) and \(\mathbb {C}^2\) by

$$\begin{aligned} \begin{aligned} \theta _{00}(2z,2\tau )-\theta _{10}(2z,2\tau )&\longleftrightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix},\\ \theta _{00}(2z,2\tau )+\theta _{10}(2z,2\tau )&\longleftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \end{aligned} \end{aligned}$$
(A.9)

Under this identification \(S^a\) have matrix forms

$$\begin{aligned} \rho ^{1/2}(S^a) = \theta _{11}(2\eta ,\tau ) \sigma ^a. \end{aligned}$$
(A.10)

The representation space \(\varTheta ^{4l+}_{00}\) has a natural Hermitian structure defined by the following Sklyanin form:

$$\begin{aligned} \left\langle f(z), g(z)\right\rangle := \int _0^1 \text {d}x \int _0^{\tau /i} \text {d}y\, \overline{f(z)} g(z) \mu (z,\bar{z}), \end{aligned}$$
(A.11)

where \(z=x+iy\) and the kernel function \(\mu (z,w)\) is defined by

$$\begin{aligned} \mu (z,w) := \frac{\theta _{11}(2z,\tau ) \theta _{11}(2w,\tau )}{ \prod _{j=0}^{2l+1} \theta _{00}(z+w+(2j-2l-1)\eta ,\tau )\theta _{00}(z-w+(2j-2l-1)\eta ,\tau ) }. \end{aligned}$$
(A.12)

The most important property of this sesquilinear positive definite scalar product is that the generators \(S^a\) of the Sklyanin algebra become self-adjoint:

$$\begin{aligned} (S^a)^* = S^a,\text { namely, } \langle f(z), S^a g(z) \rangle = \langle S^a f(z), g(z) \rangle . \end{aligned}$$
(A.13)

In [27] Sklyanin also defined involutive automorphisms:

$$\begin{aligned} X_a: (S^0, S^a, S^b, S^c) \mapsto (S^0, S^a, -S^b, -S^c), \end{aligned}$$
(A.14)

for \(a=1,2,3\), where (abc) is a cyclic permutation of (1, 2, 3). The unitary operators \(U_a\) defined by

$$\begin{aligned} \begin{aligned} U_1:&\varTheta ^{4\ell +}_{00} \ni f(z) \mapsto&(U_1 f)(z) = \text {e}^{\pi i \ell } f\left( z + \frac{1}{2} \right) ,\\ U_3:&\varTheta ^{4\ell +}_{00} \ni f(z) \mapsto&(U_3 f)(z) = \text {e}^{\pi i \ell } \text {e}^{\pi i \ell (4z+\tau )} f\left( z + \frac{\tau }{2} \right) , \end{aligned} \end{aligned}$$
(A.15)

and \(U_2= U_3 U_1\), intertwine representations \(\rho ^\ell \circ X_a\) and \(\rho ^{\ell }\): \(\rho ^\ell (X_a(S^b)) = U_a^{-1} \rho ^\ell (S^b) U_a\). Operators \(U_a\) satisfy the relations: \(U_a^2 = (-1)^{2\ell }\), \(U_a U_b = (-1)^{2\ell } U_b U_a = U_c\).

Values of Sklyanin forms of elements of \(\varTheta ^{4l++}_{00}\)

In Appendix B of [31] [equation (B.14)], we have computed the Sklyanin form of two shifted products of theta functions, using the results by Rosengren, [24, 25] (see also Konno’s work [17]):

$$\begin{aligned} \begin{aligned}&\langle [z;\alpha ]_N, [z;\gamma ]_N \rangle \\&\quad ={} C_{N} \text {e}^{\pi i N \tau /2} \prod _{j=0}^{N-1} \theta _{00}(\gamma -\bar{\alpha }+ (2j-N+1)\eta ,\tau ) \theta _{00}(\gamma +\bar{\alpha }{+} (2j{+}N{-}1)\eta ,\tau ), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} C_N = \frac{-2\eta \text {e}^{3\pi i \tau /4}}{[2(N+1)\eta ] \prod _{j=1}^\infty (1-\text {e}^{2j \pi i \tau })^3}. \end{aligned}$$

Hence, the Sklyanin form of \(f_\varepsilon (\lambda ,-\bar{u},z)\) and \(f_{\varepsilon '}(\lambda ',v,z)\) (\(\varepsilon ,\varepsilon '=\pm \), \(\lambda ,\lambda '\in \mathbb {R}\), cf. (3.13)) has the following form:

$$\begin{aligned} \begin{aligned}&\langle f_\varepsilon (\lambda ,-\bar{u},z), f_{\varepsilon '}(\lambda ',v,z) \rangle \\&\quad ={} F\left( \frac{\varepsilon '\lambda -\varepsilon \lambda }{2}+\frac{v+u}{2} \right) G\left( \frac{\varepsilon '\lambda +\varepsilon \lambda }{2}+\frac{v-u}{2} + 2(2l-1)\eta \right) , \end{aligned} \end{aligned}$$
(B.1)

where F and G are defined by

$$\begin{aligned} F(z)&:= C_{2l} \text {e}^{\pi i l \tau } \prod _{j=0}^{2l-1} \theta _{00}(z + (2j-2l+1)\eta ,\tau ), \end{aligned}$$
(B.2)
$$\begin{aligned} G(z)&:= \prod _{j=0}^{2l-1} \theta _{00}(z + (2j+2l-1)\eta - 2(2l-1)\eta ,\tau ). \end{aligned}$$
(B.3)

We shifted the argument in G(z) so that G(z) becomes an even function:

$$\begin{aligned} G(-z) = G(z). \end{aligned}$$
(B.4)

It has also the periodicity:

$$\begin{aligned} G(z+1)=G(z), \end{aligned}$$
(B.5)

because of the periodicity of \(\theta _{00}\).

In Sect. 4.2, we need the Sklyanin form among \(\omega _\lambda (u,v)\)’s defined by (4.4). The following formula is useful.

$$\begin{aligned} \begin{aligned}&\langle \omega _{\sigma \lambda }(-\bar{u},\sigma v ), \omega _{\sigma '\lambda '}( u',\sigma ' v') \rangle \\&\quad = C'_{2l}\, \theta ^{(2l)}_{00} \left( \frac{(\lambda '-v')-\overline{(\lambda -v)}}{2}+ \frac{\sigma 'u'+\sigma u}{2}+(\sigma '-\sigma )l\eta \right) \\&\qquad \times \theta ^{(2l)}_{00} \left( \frac{(\lambda '-v')+\overline{(\lambda -v)}}{2}+ \frac{\sigma 'u'-\sigma u}{2}+(\sigma '+\sigma )l\eta \right) , \end{aligned} \end{aligned}$$
(B.6)

where

$$\begin{aligned} \begin{aligned} C'_{2l}&:=C_{2l} \text {e}^{\pi i l \tau },\\ \theta ^{(2l)}_{00}(u)&:= \prod _{j=0}^{2l-1} \theta _{00}( u + (2j-2l+1)\eta , \tau ). \end{aligned} \end{aligned}$$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takebe, T. Q-operators for higher spin eight vertex models with a rational anisotropy parameter. Lett Math Phys 109, 1867–1890 (2019). https://doi.org/10.1007/s11005-019-01179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01179-7

Keywords

Mathematics Subject Classification

Navigation