Skip to main content
Log in

Quantum quasiballistic dynamics and thick point spectrum

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain dynamical lower bounds for some self-adjoint operators with pure point spectrum in terms of the spacing properties of their eigenvalues. In particular, it is shown that for systems with thick point spectrum, typically in Baire’s sense, the dynamics of each initial condition (with respect to some orthonormal bases of the space) presents a quasiballistic behaviour. We present explicit applications to some Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbaroux, J.-M., Germinet, F., Tcheremchantsev, S.: Fractal dimensions and the phenomenon of intermittency in quantum dynamics. Duke Math. J. 110, 161–194 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbaroux, J.-M., Germinet, F., Tcheremchantsev, S.: Generalized fractal dimensions: equivalence and basic properties. J. Math. Pure Appl. 80, 977–1012 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breuer, J., Last, Y., Strauss, Y.: Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J. 157, 425–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Carvalho, S.L., de Oliveira, C.R.: Correlation Wonderland theorems. J. Math. Phys. 57, 063501 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Carvalho, S.L., de Oliveira, C.R.: Generic quasilocalized and quasiballistic discrete Schrödinger operators. Proc. Am. Math. Soc. 144, 129–141 (2016)

    Article  MATH  Google Scholar 

  7. Damanik, D.: Schrödinger operators with dynamically defined potentials. Ergod. Theory Dyn. Syst. 37, 1681–1764 (2017)

    Article  MATH  Google Scholar 

  8. Damanik, D., Tcheremchantsev, S.: A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete Contin. Dyn. Syst. 28, 1381–1412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Oliveira, C.R., Prado, R.A.: Dynamical delocalization for the 1D Bernoulli discrete Dirac operator. J. Phys. A Math. Gen. 38, L115–L119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Oliveira, C.R., Prado, R.A.: Quantum Hamiltonians with quasi-ballistic dynamics and point spectrum. J. Differ. Equ. 235, 85–100 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV: Hausdorff dimensions, rank one perturbations and localization. J. Anal. Math. 69, 153–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinaburg, E.I.: Stark effect for a difference Schrödinger operator. Theor. Math. Phys. 78, 50–57 (1989)

    Article  MathSciNet  Google Scholar 

  13. Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transport transition. Duke Math. J. 124, 309–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guarneri, I., Schulz-Baldes, H.: Lower bounds on wave-packet propagation by packing dimensions of spectral measures. Math. Phys. Electron. J. 5, 1–16 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Howland, J.S.: Perturbation theory of dense point spectra. J. Funct. Anal. 74, 52–80 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Last, Y.: Quantum dynamics and decomposition of singular continuous spectra. J. Funct. Anal. 142, 406–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, K., Simon, B.: Quantum magnetic Hamiltonians with remarkable spectral properties. Phys. Rev. Lett. 44, 1706–1707 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pöschel, J.: Examples of discrete Schrödinger operators with pure point spectrum. Commun. Math. Phys. 88, 447–463 (1983)

    Article  ADS  MATH  Google Scholar 

  19. Prado, R.A., de Oliveira, C.R., Carvalho, S.L.: Dynamical localization for discrete Anderson Dirac operators. J. Stat. Phys. 167, 260–296 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Simon, B.: Absence of ballistic motion. Commun. Math. Phys. 134, 209–212 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Simon, B.: Some Schrödinger operators with dense point spectrum. Proc. Am. Math. Soc. 125, 203–208 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Stolz, G.: An introduction to the mathematics of Anderson localization, entropy and the quantum II. Contemp. Math. 552, 71–108 (2011)

    Article  MATH  Google Scholar 

  23. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. von Neumann, J.: Charakterisierung des Spektrums eines Integraloperators. Actualitc Sci. Indust. Hermann & cie, Paris (1935)

    Google Scholar 

  25. Weyl, H.: Über beschränlinkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27, 373–392 (1909)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

M.A. was supported by CAPES (a Brazilian government agency). S.L.C. thanks to the partial support by FAPEMIG (a Brazilian government agency; Universal Project 001/17/CEX-APQ-00352-17). C.R.dO. thanks the partial support by CNPq (a Brazilian government agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas L. Carvalho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proposition A.1

Let \(-\infty< a<b <\infty \). If \(\displaystyle \cup _{j} \{a_j\}\) is a dense subset of [ab], then \((a_j)\) is weakly spaced.

Proof

Let \(\alpha >0\). Firstly, we note that, for each \(x > 1\),

$$\begin{aligned} \biggr (\frac{x}{x-1}\biggr )^\alpha + \biggr (\frac{x}{x+1}\biggr )^\alpha > 2. \end{aligned}$$
(8)

Namely, set

$$\begin{aligned} f(\alpha ) := \biggr (\frac{x}{x-1}\biggr )^\alpha + \biggr (\frac{x}{x+1}\biggr )^\alpha . \end{aligned}$$

So,

$$\begin{aligned} \biggr (\frac{x-1}{x}\biggr )^\alpha f'(\alpha )= & {} \ln \biggr (\frac{x}{x-1}\biggr ) - \biggr (\frac{x-1}{x+1}\biggr )^\alpha \ln \biggr (\frac{x+1}{x}\biggr )\\> & {} \ln \biggr (\frac{x}{x-1}\biggr ) \biggr (1-\biggr (\frac{x-1}{x+1}\biggr )^\alpha \biggr )>0. \end{aligned}$$

Since \(f(0) = 2\), the inequality in (8) follows.

For each \(l \ge 1\), set

$$\begin{aligned} b_l := a+ \frac{1}{l^\alpha }; \end{aligned}$$

by (8), for \(l\ge 2\) one has \(K_l:=b_{l-1} -2b_{l} + b_{l+ 1}>0\). Note that

$$\begin{aligned} \lim _{l \rightarrow \infty } l^{1+\alpha }(b_l -b_{l+1})=\alpha . \end{aligned}$$
(9)

Now, for l sufficiently large such that \(b_l \in [a,b)\), pick \(a_{j_l}\) satisfying

$$\begin{aligned} 0\le a_{j_l} - b_l \le \min \biggr \{\frac{K_l}{2},\frac{\alpha }{4l^{1+\alpha }}\biggr \}. \end{aligned}$$
(10)

Then, by (9) and (10), for l sufficiently large, one has

$$\begin{aligned} a_{j_l} - a_{j_{l+1}}= & {} (a_{j_l} - b_l) - (a_{j_{l+1}}-b_{l+1}) + (b_l - b_{l+1})\\\ge & {} -\frac{\alpha }{4(l+1)^{1+\alpha }} + \frac{3\alpha }{4l^{1+\alpha }} \ge \frac{\alpha }{2l^{1+\alpha }},\\ a_{j_l} - a_{j_{l+1}}= & {} (a_{j_l} - b_l) - (a_{j_{l+1}}-b_{l+1}) + (b_l - b_{l+1})\\\le & {} \frac{\alpha }{4l^{1+\alpha }} + \frac{7\alpha }{4l^{1+\alpha }} = \frac{2\alpha }{l^{1+\alpha }}. \end{aligned}$$

Hence,

$$\begin{aligned} \frac{\alpha }{2l^{1+\alpha }} \le a_{j_l} - a_{j_{l+1}} \le \frac{2\alpha }{l^{1+\alpha }}. \end{aligned}$$

Moreover,

$$\begin{aligned}&(a_{j_l} -a_{j_{l+1}})-(a_{j_{l+1}}- a_{j_{l+2}})\\&\quad = (a_{j_l} -2a_{j_{l+1}} + a_{j_{l+2}}) \\&\quad = a_{j_l} -b_l -2(a_{j_{l+1}} - b_{l+1}) + a_{j_{l+2}} -b_{l+2} + (b_{l} -2b_{l+1} + b_{l+2})\\&\quad \ge -2(a_{j_{l+1}} - b_{l+1}) + K_{l+1} \ge 0, \end{aligned}$$

which implies that \(a_{j_l} - a_{j_{l+1}}\) goes to zero monotonically. Therefore, \((a_j)\) is weakly spaced. \(\square \)

Proposition A.2

Let T be a self-adjoint operator in \(\mathcal {H}\), \(p>0\) and let \(B = \{e_n\}_{n \in {\mathbb {Z}}}\) be an orthonormal basis. Suppose that, for every \(\xi \in \mathcal {H}\), \(\sum _{n \in {\mathbb {Z}}} |n|^p |\langle \hbox {e}^{-itT}\xi ,e_n \rangle |^2 = \infty \) for \(t = 0\) if, and only if, \(\sum _{n \in {\mathbb {Z}}} |n|^p |\langle \hbox {e}^{-itT}\xi ,e_n \rangle |^2 = \infty \) for all \(t \in {\mathbb {R}}\). Then,

$$\begin{aligned} G(B) = \{\xi \in {\mathcal {H}}\mid \langle \langle |X|^p \rangle \rangle _{t,\xi } \equiv \infty \text { for all } p>0\} \end{aligned}$$

is a dense \(G_\delta \) set in \({\mathcal {H}}\).

Proof

One just has to show that

$$\begin{aligned} \left\{ \xi \in {\mathcal {H}}\mid \sum _{n \in {\mathbb {Z}}} |n|^p |\langle \xi ,e_n \rangle |^2 = \infty \text { for all } p>0\right\} \end{aligned}$$

is a dense \(G_\delta \) set in \({\mathcal {H}}\).

Since for each \(j\ge 1\), the mapping

$$\begin{aligned} {\mathcal {H}} \ni \xi \longmapsto \sum _{|n|\le j} |n|^p |\langle \xi ,e_n \rangle |^2 \end{aligned}$$

is continuous, it follows that, for each \(p>0\),

$$\begin{aligned} \left\{ \xi \in {\mathcal {H}} \mid \sum _{n \in {\mathbb {Z}}} |n|^p |\langle \xi ,e_n \rangle |^2 = \infty \right\} = \bigcap _{k \ge 1} \bigcap _{j\ge 1} \left\{ \xi \in {\mathcal {H}} \mid \sum _{|n|\le j} |n|^p |\langle \xi ,e_n \rangle |^2 > k\right\} \end{aligned}$$

is a \(G_\delta \) set in \(\mathcal {H}\). Now, for each fixed \(p>0\), \(\xi \in \mathcal {H}\) and \(j\in \mathbb {N}\), set

$$\begin{aligned} \xi _j := \displaystyle \sum _{|n|\le j} \langle \xi ,e_n \rangle e_n + \displaystyle \sum _{|n|>j}^\infty \frac{1}{\sqrt{|n|^{p+1}}}e_n. \end{aligned}$$

It is clear that \(\xi _j \rightarrow \xi \) in \(\mathcal {H}\). Moreover, for each \(j \ge 1\), \(\sum _{n \in {\mathbb {Z}}} n^p |\langle \xi _j ,e_n \rangle |^2 = \infty \). Thus, for each \(p>0\), \(\{\xi \in {\mathcal {H}} \mid \sum _{n \in {\mathbb {Z}}} |n|^p |\langle \xi ,e_n \rangle |^2 = \infty \}\) is dense in \({\mathcal {H}}\), and therefore, by Baire’s theorem,

$$\begin{aligned}&\left\{ \xi \in {\mathcal {H}}\mid \sum _{n \in {\mathbb {Z}}} |n|^p |\langle \xi ,e_n \rangle |^2 = \infty \text { for all } p>0\right\} \\&\quad = \bigcap _{p\in {\mathbb {Q}}^+} \left\{ \xi \in {\mathcal {H}} \mid \sum _{n \in {\mathbb {Z}}} |n|^p |\langle \xi ,e_n \rangle |^2 = \infty \right\} \end{aligned}$$

is a dense \(G_\delta \) set in \({\mathcal {H}}\), where \({\mathbb {Q}}^+:=\{x\in {\mathbb {Q}}\mid x>0\}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloisio, M., Carvalho, S.L. & de Oliveira, C.R. Quantum quasiballistic dynamics and thick point spectrum. Lett Math Phys 109, 1891–1906 (2019). https://doi.org/10.1007/s11005-019-01166-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01166-y

Keywords

Mathematics Subject Classification

Navigation