Skip to main content
Log in

Elliptic free-fermion model with OS boundary and elliptic Pfaffians

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce and study a class of partition functions of an elliptic free-fermionic face model. We study the partition functions with a triangular boundary using the off-diagonal K-matrix at the boundary (OS boundary), which was introduced by Kuperberg as a class of variants of the domain wall boundary partition functions. We find explicit forms of the partition functions with OS boundary using elliptic Pfaffians. We find two expressions based on two versions of Korepin’s method, and we obtain an identity between two elliptic Pfaffians as a corollary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bethe, H.: On the theory of metals. I. Eigenvalues and eigenfunctions of a linear chain of atoms. Z. Phys. 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  2. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: Quantum inverse problem method I. Theor. Math. Phys. 40, 194–220 (1979)

    MathSciNet  Google Scholar 

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  4. Korepin, V.B., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  5. Jimbo, M., Miwa, T.: Algebraic Analysis of Solvable Lattice Models. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Reshetikhin, N.: Lectures on integrable models in statistical mechanics. In: Exact Methods in Low- Dimensional Statistical Physics and Quantum Computing, Proceedings of Les Houches School in Theoretical Physics. Oxford University Press (2010)

  7. Korepin, V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Izergin, A.: Partition function of the six-vertex model in a finite volume. Sov. Phys. Dokl. 32, 878–879 (1987)

    ADS  MATH  Google Scholar 

  9. Tsuchiya, O.: Determinant formula for the six-vertex model with reflecting end. J. Math. Phys. 39, 5946–5951 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bressoud, D.: Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. MAA Spectrum, Mathematical Association of America, Washington, DC (1999)

    Book  MATH  Google Scholar 

  11. Kuperberg, G.: Another proof of the alternating-sign matrix conjecture. Int. Math. Res. Not. 3, 139–150 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuperberg, G.: Symmetry classes of alternating-sign matrices under one roof. Ann. Math. 156, 835–866 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Okada, S.: Enumeration of symmetry classes of alternating sign matrices and characters of classical groups. J. Algebr. Comb. 23, 43–69 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Razumov, A.V., Stroganov, Y.G.: On refined enumerations of some symmetry classes of ASMs. Theor. Math. Phys. 141, 1609–1630 (2004)

    Article  MATH  Google Scholar 

  15. Colomo, F., Pronko, A.G.: Square ice, alternating sign matrices, and classical orthogonal polynomials. J. Stat. Mech.: Theor. Exp. 2005, P01005 (2005)

  16. Betea, D., Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures. J. Algebr. Comb. 42, 555–603 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Behrend, R.E., Fischer, I., Konvalinka, M.: Diagonally and antidiagonally symmetric alternating sign matrices of odd order. Adv. Math. 315, 324–365 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okada, S.: Alternating sign matrices and some deformations of Weyl’s denominator formula. J. Algebr. Comb. 2, 155–176 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hamel, A., King, R.C.: Symplectic shifted tableaux and deformations of Weyl’s denominator formula for \(sp(2n)\). J. Algebr. Comb. 16, 269–300 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamel, A., King, R.C.: U-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration. J. Algebr. Comb. 21, 395–421 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhao, S.-Y., Zhang, Y.-Z.: Supersymmetric vertex models with domain wall boundary conditions. J. Math. Phys. 48, 023504 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Foda, O., Caradoc A., Wheeler, M., Zuparic, M.: On the trigonometric Felderhof model with domain wall boundary conditions. J. Stat. Mech. 2007, P03010 (2007)

  23. Foda, O., Wheeler, M., Zuparic, M.: Two elliptic height models with factorized domain wall partition functions J. Stat. Mech. 2008, P02001 (2008)

  24. Zuparic, M.: Studies in integrable quantum lattice models and classical hierarchies, PhD thesis, Department of Mathematics and Statistics, University of Melbourne (2009). e-print arXiv:0908.3936 [math-ph]

  25. Wheeler, M.: Free fermions in classical and quantum integrable models, PhD Thesis, Department of Mathematics and Statistics, University of Melbourne (2010). e-print arXiv:1110.6703 [math-ph]

  26. Brubaker, B., Schultz, A.: The 6-vertex model and deformations of the Weyl character formula. J. Algebr. Comb. 42, 917–958 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rosengren, H.: Elliptic Pfaffians and solvable lattice models. J. Stat. Mech. 2016, P083106 (2016)

  28. Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities. J. Stat. Phys. 35, 193–266 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Rosengren, H.: An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137–155 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pakuliak, S., Rubtsov, V., Silantyev, A.: The SOS model partition function and the elliptic weight functions. J. Phys. A: Math. Theor. 41, 295204 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang, W.-L., Zhang, Y.-Z.: Partition function of the eight-vertex model with domain wall boundary condition. J. Math. Phys. 50, 083518 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Galleas, W.: Elliptic solid-on-solid model’s partition function as a single determinant. Phys. Rev. E 94, 010102(R) (2016)

    Article  ADS  Google Scholar 

  33. Okada, S.: An elliptic generalization of Schur’s Pfaffian identity. Adv. Math. 204, 530–538 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rosengren, H.: Sums of triangular numbers from the Frobenius determinant. Adv. Math. 208, 935–961 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rosengren, H.: Sums of squares from elliptic pfaffians. Int. J. Number Theory 4, 873–902 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rains, E.: Recurrences for elliptic hypergeometric integrals. Rokko lectures in mathematics. Elliptic Integr. Syst. 18, 183–199 (2005)

    ADS  Google Scholar 

  37. Schur, I.: Uber die Darstellung der symmetrischen und der alternirenden Gruppe durch gebrochene lineare Substitutuionen. J. Reine Angew. Math. 139, 155–250 (1911)

    MATH  MathSciNet  Google Scholar 

  38. Cauchy, A.L.: Memoire sur les fonctions alternees et sur les sommes alternees. Exercices Anal. et Phys. Math. 2, 151–159 (1841)

    Google Scholar 

  39. Frobenius, F.: Uber die elliptischen Funktionen zweiter Art. J. fur die reine und ungew. Math. 93, 53–68 (1882)

    MATH  MathSciNet  Google Scholar 

  40. Hasegawa, K.: Ruijsenaars’ commuting difference operators as commuting transfer matrices. Commun. Math. Phys. 187, 289–325 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Warnaar, O.: Summation and transformation formulas for elliptic hypergeometric series. Constr. Approx. 18, 479–502 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rosengren, H., Schlosser, M.: Elliptic determinant evaluations and the Macdonald identities for affine root systems. Comput. Math. 142, 937–961 (2006)

    MATH  MathSciNet  Google Scholar 

  43. Okado, M.: Solvable face models related to the Lie superalgebra \(sl(m|n)\). Lett. Math. Phys. 22, 39–43 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Deguchi, T., Martin, P.: An algebraic approach to vertex models and transfer matrix spectra. Int. J. Mod. Phys. A 7(Suppl. 1A), 165–196 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. (NY) 70, 193–228 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Felderhof, B.: Direct diagonalization of the transfer matrix of the zero-field free-fermion model. Physica 65, 421–451 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  47. Drinfeld, V.: Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  48. Jimbo, M.: A \(q\)-difference analogue of \(U(G)\) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Lieb, E.H., Wu, F.Y.: Two-dimensional ferroelectric models. In: Phase Transitions and Critical Phenomena, vol. 1, pp. 331–490. Academic Press, London (1972)

  50. Perk, J.H.H., Schultz, C.L.: New families of commuting transfer matrices in q-state vertex models. Phys. Lett. A 84, 407–410 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  51. Murakami, J.: The free-fermion model in presence of field related to the quantum group \(U_q(sl_2)\) of affine type and the multi-variable Alexander polynomial of links. Infinite analysis. Adv. Ser. Math. Phys. 16B, 765–772 (1991)

    Google Scholar 

  52. Deguchi, T., Akutsu, Y.: Colored vertex models, colored IRF models and invariants of trivalent colored graphs. J. Phys. Soc. Jpn. 62, 19–35 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Wheeler, M.: An Izergin–Korepin procedure for calculating scalar products in six-. the vertex model. Nucl. Phys. B 852, 469–507 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Filali, G., Kitanine, N.: The partition function of the trigonometric SOS model with a reflecting end. J. Stat. Mech. 2010, L01001(2010)

  55. Filali, G.: Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end. J. Geom. Phys. 61, 1789–1796 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Yang, W.-L., Chen, X., Feng, J., Hao, K., Shi, K.-J., Sun, C.-Y., Yang, Z.-Y., Zhang, Y.-Z.: Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end. Nucl. Phys. B 847, 367–386 (2011)

    Article  ADS  MATH  Google Scholar 

  57. Yang, W.-L., Chen, X., Feng, J., Hao, K., Wu, K., Yang, Z.-Y., Zhang, Y.-Z.: Scalar products of the open XYZ chain with non-diagonal boundary terms. Nucl. Phys. B 848, 523–544 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Galleas, W.: Multiple integral representation for the trigonometric SOS model with domain wall boundaries. Nucl. Phys. B 858, 117–141 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Galleas, W.: Refined functional relations for the elliptic SOS model. Nucl. Phys. B 867, 855–871 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Galleas, W., Lamers, J.: Reflection algebra and functional equations. Nucl. Phys. B 886, 1003–1028 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Lamers, J.: Integral formula for elliptic SOS models with domain walls and a reflecting end. Nucl. Phys. B 901, 556–583 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Motegi, K.: Elliptic supersymmetric integrable model and multivariable elliptic functions. Prog. Theor. Exp. Phys. 2017, 123A01 (2017)

    Article  Google Scholar 

  63. Motegi, K.: Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin–Korepin analysis. J. Math. Phys. 59, 053505 (2018)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Motegi, K.: Scalar products of the elliptic Felderhof model and elliptic Cauchy formula. J. Geom. Phys. 134, 58–76 (2018)

  65. Felder, G., A. Schorr, A.: Separation of variables for quantum integrable systems on elliptic curves. J. Phys. A: Math. Gen. 32, 8001 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Felder, G.: Elliptic quantum groups. In: Proceedings of the XIth International Congress of Mathematical Physics (Paris, 1994), pp. 211–218. International Press, Boston (1995)

  67. Felder, G., Varchenko, A.: Algebraic Bethe ansatz for the elliptic quantum group \(E_{\tau,\eta }(sl_2)\). Nucl. Phys. B 480, 485–503 (1996)

    Article  ADS  MATH  Google Scholar 

  68. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2398 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. de Vega, H.J., Gonzalez-Ruiz, A.: Boundary K-matrices for the XYZ, XXZ and XXX spin chains. J. Phys. A 27, 6129–6137 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. Inami, T., Konno, H.: Integrable XYZ spin chain with boundaries. J. Phys. A 27, L913–L918 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Fan, H., Hou, B.-Y., Shi, K.-J.: General solution of reflection equation for eight-vertex SOS model. J. Phys. A: Math. Gen. 28, 4743 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Behrend, R.E., Pearce, P.: A construction of solutions to reflection equations for interaction-round-a-face models. J. Phys. A: Math. Gen. 29, 7827 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Schorr, A.: Separation of variables for the eight-vertex SOS model with antiperiodic boundary conditions. Diss. Mathematische Wissenschaften ETH Zurich, Nr. 13682 (2000)

Download references

Acknowledgements

The author thanks the referees for careful reading, various invaluable comments and suggestions to improve the paper. This work was partially supported by Grant-in-Aid for Scientific Research (C) No. 18K03205 and No. 16K05468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Motegi.

Appendix: An elementary proof of (4.35) for the case \(n=2\)

Appendix: An elementary proof of (4.35) for the case \(n=2\)

In this Appendix, we check (4.35) for the case \(n=2\) by elementary manipulations. In this case, one can see from the definition of Pfaffians (2.1) that proving (4.35) is equivalent to showing the following identity

$$\begin{aligned}&\frac{[u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h]}{[u_2-u_1+1/2][u_4-u_3+1/2]} \nonumber \\&\qquad \times [u_3+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_2+1/2] \nonumber \\&\qquad -\frac{[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h]}{[u_3-u_1+1/2][u_4-u_2+1/2]} \nonumber \\&\qquad \times [u_2+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\qquad +\frac{[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h]}{[u_4-u_1+1/2][u_3-u_2+1/2]} \nonumber \\&\qquad \times [u_2+u_1+1/2][u_3+u_1+1/2][u_4+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\quad =\frac{[u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h][u_3+u_1][u_4+u_1][u_3+u_2][u_4+u_2]}{[u_2-u_1+1/2][u_4-u_3+1/2]}\nonumber \\&\qquad -\frac{[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h][u_2+u_1][u_4+u_1][u_3+u_2][u_4+u_3]}{[u_3-u_1+1/2][u_4-u_2+1/2]} \nonumber \\&\qquad +\frac{[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h][u_2+u_1][u_3+u_1][u_4+u_2][u_4+u_3]}{[u_4-u_1+1/2][u_3-u_2+1/2]}. \end{aligned}$$
(A.1)

Let us show this using the addition formula for theta functions (2.8) repeatedly. The difference between the left hand side and the right-hand side of (A.1) can be expressed as

$$\begin{aligned}&\frac{[u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h]}{[u_2-u_1+1/2][u_4-u_3+1/2]} \nonumber \\&\quad \times ([u_3+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_2+1/2] \nonumber \\&\quad -[u_3+u_1][u_4+u_1][u_3+u_2][u_4+u_2]) \nonumber \\&\quad -\frac{[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h]}{[u_3-u_1+1/2][u_4-u_2+1/2]} \nonumber \\&\quad \times ([u_2+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\quad -[u_2+u_1][u_4+u_1][u_3+u_2][u_4+u_3]) \nonumber \\&\quad +\frac{[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h]}{[u_4-u_1+1/2][u_3-u_2+1/2]}\nonumber \\&\quad \times ([u_2+u_1+1/2][u_3+u_1+1/2][u_4+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\quad -[u_2+u_1][u_3+u_1][u_4+u_2][u_4+u_3]). \end{aligned}$$
(A.2)

Using the addition formula for theta functions (2.8) (and (2.7)), one finds

$$\begin{aligned}&{[}u_3+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_2+1/2] \nonumber \\&\qquad -[u_3+u_1][u_4+u_1][u_3+u_2][u_4+u_2] \nonumber \\&\quad =[1/2][u_1+u_2+u_3+u_4+1/2][u_2-u_1+1/2][u_4-u_3+1/2], \end{aligned}$$
(A.3)
$$\begin{aligned}&{[}u_2+u_1+1/2][u_4+u_1+1/2][u_3+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\qquad -[u_2+u_1][u_4+u_1][u_3+u_2][u_4+u_3]\nonumber \\&\quad =[1/2][u_1+u_2+u_3+u_4+1/2][u_3-u_1+1/2][u_4-u_2+1/2], \end{aligned}$$
(A.4)
$$\begin{aligned}&{[}u_2+u_1+1/2][u_3+u_1+1/2][u_4+u_2+1/2][u_4+u_3+1/2] \nonumber \\&\qquad -[u_2+u_1][u_3+u_1][u_4+u_2][u_4+u_3] \nonumber \\&\quad =[1/2][u_1+u_2+u_3+u_4+1/2][u_3-u_2+1/2][u_4-u_1+1/2]. \end{aligned}$$
(A.5)

Using identities (A.3), (A.4) and (A.5), (A.2) reduces to

$$\begin{aligned}&\frac{[u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h]}{[u_2-u_1+1/2][u_4-u_3+1/2]}\nonumber \\&\qquad \times [1/2][u_1+u_2+u_3+u_4+1/2][u_2-u_1+1/2][u_4-u_3+1/2]\nonumber \\&\qquad -\frac{[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h]}{[u_3-u_1+1/2][u_4-u_2+1/2]}\nonumber \\&\qquad \times [1/2][u_1+u_2+u_3+u_4+1/2][u_3-u_1+1/2][u_4-u_2+1/2]\nonumber \\&\qquad +\frac{[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h]}{[u_4-u_1+1/2][u_3-u_2+1/2]}\nonumber \\&\qquad \times [1/2][u_1+u_2+u_3+u_4+1/2][u_3-u_2+1/2][u_4-u_1+1/2] \nonumber \\&\quad =[1/2][u_1+u_2+u_3+u_4+1/2] ([u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h]\nonumber \\&\qquad -[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h]\nonumber \\&\qquad +[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h]). \end{aligned}$$
(A.6)

One can apply addition formula (2.8) again to get

$$\begin{aligned}&{[}u_2-u_1][u_1+u_2+h][u_4-u_3][u_3+u_4+h]\nonumber \\&\quad -[u_3-u_1][u_1+u_3+h][u_4-u_2][u_2+u_4+h] \nonumber \\&\quad +[u_4-u_1][u_1+u_4+h][u_3-u_2][u_2+u_3+h]=0, \end{aligned}$$
(A.7)

and we find the right-hand side of (A.6) becomes zero. Hence (4.35) for the case \(n=2\) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motegi, K. Elliptic free-fermion model with OS boundary and elliptic Pfaffians. Lett Math Phys 109, 923–943 (2019). https://doi.org/10.1007/s11005-018-1130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1130-8

Keywords

Mathematics Subject Classification

Navigation