Skip to main content
Log in

New integrable (\(3+1\))-dimensional systems and contact geometry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a novel systematic construction for integrable (\(3+1\))-dimensional dispersionless systems using nonisospectral Lax pairs that involve contact vector fields. In particular, we present new large classes of (\(3+1\))-dimensional integrable dispersionless systems associated with the Lax pairs which are polynomial and rational in the spectral parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Adler, V.E., Shabat, A.B., Yamilov, R.I.: Symmetry approach to the integrability problem. Theor. Math. Phys. 125(3), 1603–1661 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arsie, A., Lorenzoni, P.: Complex reflection groups, logarithmic connections and bi-flat \(F\)-manifolds. Lett. Math. Phys. 107(10), 1919–1961 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Błaszak, M.: Classical \(R\)-matrices on Poisson algebras and related dispersionless systems. Phys. Lett. A 297(3–4), 191–195 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Błaszak, M., Szablikowski, B.: Classical \(R\)-matrix theory of dispersionless systems. II. (2+1) dimension theory. J. Phys. A Math. Gen. 35(48), 10345–10364 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I., Schief, W.K., Suris, Y.B.: On a discretization of confocal quadrics. I. An integrable systems approach. J. Int. Sys. 1, xyw005 (2015). arXiv:1511.01777

  7. Bogdanov, L.V., Konopelchenko, B.G.: Projective differential geometry of multidimensional dispersionless integrable hierarchies. J. Phys. Conf. Ser. 482, 012005 (2014)

    Article  Google Scholar 

  8. Bruce, A.J., Grabowska, K., Grabowski, J.: Remarks on contact and Jacobi geometry. SIGMA 13, 059 (2017). arXiv:1507.05405

  9. Burtsev, S.P., Zakharov, V.E., Mikhailov, A.V.: Inverse scattering method with variable spectral parameter. Theor. Math. Phys. 70(3), 227–240 (1987)

    Article  MATH  Google Scholar 

  10. Calderbank, D.M.J., Kruglikov, B.: Integrability via geometry: dispersionless differential equations in three and four dimensions. arXiv:1612.02753

  11. Calogero, F., Degasperis, A.: Spectral Transform and Solitons. Vol. I. Tools to Solve and Investigate Nonlinear Evolution Equations. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  12. Chvartatskyi, O., Dimakis, A., Müller-Hoissen, F.: Self-consistent sources for integrable equations via deformations of binary Darboux transformations. Lett. Math. Phys. 106(8), 1139–1179 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Dapić, N., Kunzinger, M., Pilipović, S.: Symmetry group analysis of weak solutions. Proc. Lond. Math. Soc. 84(3), 686–710 (2002). arXiv:math/0104055

  14. de León, M., Marrero, J.C., Padrón, E.: On the geometric prequantization of brackets. Rev. R. Acad. Cien. Serie A. Mat. 95(1), 65–83 (2001)

    MathSciNet  MATH  Google Scholar 

  15. De Sole, A., Kac, V.G., Turhan, R.: A new approach to the Lenard–Magri scheme of integrability. Commun. Math. Phys. 330(1), 107–122 (2014). arXiv:1303.3438

  16. Doktorov, E.V., Leble, S.B.: A Dressing Method in Mathematical Physics. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  17. Dubrovin, B.A., Novikov, S.P.: The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method. Sov. Math. Dokl. 270(4), 665–669 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Dunajski, M., Grant, J.D.E., Strachan, I.A.B.: Multidimensional integrable systems and deformations of Lie algebra homomorphisms. J. Math. Phys. 48(9), 093502 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Dunajski, M.: Solitons, Instantons and Twistors. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  20. Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein–Weyl and conformal self-duality equations. J. Math. Phys. 56, 083501 (2015). (arXiv:1406.0018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Ferapontov, E.V., Khusnutdinova, K.R.: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004). arXiv:nlin/0305044

  22. Ferapontov, E.V., Khusnutdinova, K.R., Klein, C.: On linear degeneracy of integrable quasilinear systems in higher dimensions. Lett. Math. Phys. 96(1–3), 5–35 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Ferapontov, E.V., Lorenzoni, P., Savoldi, A.: Hamiltonian operators of Dubrovin–Novikov type in 2D. Lett. Math. Phys. 105(3), 341–377 (2015). arXiv:1312.0475

  24. Ferapontov, E.V., Moro, A., Novikov, V.S.: Integrable equations in 2+1 dimensions: deformations of dispersionless limits. J. Phys. A Math. Theor. 42(34), 345205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fokas, A.S.: Symmetries and integrability. Stud. Appl. Math. 77(3), 253–299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fuchssteiner, B.: Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations. Prog. Theor. Phys. 70(6), 1508–1522 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Grundland, A.M., Sheftel, M.B., Winternitz, P.: Invariant solutions of hydrodynamic-type equations. J. Phys. A Math. Gen. 33, 8193–8215 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Guay-Paquet, M., Harnad, J.: 2D Toda \(\tau \)-functions as combinatorial generating functions. Lett. Math. Phys. 105(6), 827–852 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Hentosh, O.E., Prykarpatsky, Y.A., Blackmore, D., Prykarpatski, A.K.: Lie-algebraic structure of Lax-Sato integrable heavenly equations and the Lagrange-d’Alembert principle. J. Geom. Phys. 120, 208–227 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Khesin, B., Tabachnikov, S.: Contact complete integrability. Regul. Chaotic Dyn. 15(4–5), 504–520 (2010). arXiv:0910.0375

  31. Kodama, Y., Gibbons, J.: A method for solving the dispersionless KP hierarchy and its exact solutions. II. Phys. Lett. A 135(3), 167–170 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  32. Konopelchenko, B.G.: Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in \(2+1\) Dimensions. Plenum Press, New York (1992)

    Book  MATH  Google Scholar 

  33. Konopelchenko, B.G., Martínez Alonso, L.: Dispersionless scalar integrable hierarchies, Whitham hierarchy, and the quasiclassical \(\bar{\partial }\)-dressing method. J. Math. Phys. 43(7), 3807–3823 (2002). arXiv:nlin/0105071

  34. Krasil’shchik, J., Verbovetsky, A.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61(9), 1633–1674 (2011). arXiv:1002.0077

  35. Krichever, I.M.: The dispersionless Lax equations and topological minimal models. Commun. Math. Phys. 143, 415–429 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Kruglikov, B., Morozov, O.: Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations. Lett. Math. Phys. 105(12), 1703–1723 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Kushner, A., Lychagin, V., Rubtsov, V.: Contact Geometry and Non-linear Differential Equations. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  38. Lin, C.C., Reissner, E., Tsien, H.S.: On two-dimensional non-steady motion of a slender body in a compressible fluid. J. Math. Phys. 27, 220–231 (1948). doi:10.1002/sapm1948271220

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma, W.-X., Bullough, R.K., Caudrey, P.J., Fushchych, W.I.: Time-dependent symmetries of variable-coefficient evolution equations and graded Lie algebras. J. Phys. A Math. Gen. 30(14), 5141–5149 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Manakov, S.V., Santini, P.M.: Integrable dispersionless PDEs arising as commutation condition of pairs of vector fields. J. Phys. Conf. Ser. 482, 012029 (2014)

    Article  Google Scholar 

  41. Manakov, S.V., Santini, P.M.: Solvable vector nonlinear Riemann problems, exact implicit solutions of dispersionless PDEs and wave breaking. J. Phys. A Math. Theor. 44(34), 345203 (2011). arXiv:1011.2619

  42. Mañas, M., Martínez Alonso, L.: A hodograph transformation applied to a large class of PDEs. Theor. Math. Phys. 137, 1544–1549 (2003)

    Article  MATH  Google Scholar 

  43. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  44. Matveev, V.B.: Darboux transformations, covariance theorems and integrable systems. In: L.D. Faddeev’s Seminar on Mathematical Physics, pp. 179–209. Am. Math. Soc., Providence, RI (2000)

  45. Mikhailov, A.V., Yamilov, R.I.: Towards classification of (2+1)-dimensional integrable equations. Integrability conditions. I. J. Phys. A Math. Gen. 31(31), 6707–6715 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Mokhov, O.I.: Classification of nonsingular multidimensional Dubrovin–Novikov brackets. Funct. Anal. Appl. 42(1), 33–44 (2008). arXiv:math/0611785

  47. Odesskii, A.V., Sokolov, V.V.: Integrable pseudopotentials related to generalized hypergeometric functions. Sel. Math. (N.S.) 16, 145–172 (2010). arXiv:0803.0086

  48. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  49. Olver, P.J., Sanders, J.A., Wang, J.P.: Ghost symmetries. J. Nonlinear Math. Phys. 9(suppl. 1), 164–172 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  50. Previato, E.: Sigma function and dispersionless hierarchies. In: XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., vol. 1307, pp. 140–156. Am. Inst. Phys., Melville, New York (2010)

  51. Rosenhaus, V.: Boundary conditions and conserved densities for potential Zabolotskaya–Khokhlov equation. J. Nonlinear Math. Phys. 13(2), 255–270 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Sergyeyev, A.: A new class of (3+1)-dimensional integrable systems related to contact geometry. arXiv:1401.2122v3

  53. Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7, 743–808 (1995). arXiv:hep-th/9405096

    Article  MathSciNet  MATH  Google Scholar 

  54. Takasaki, K.: Differential Fay identities and auxiliary linear problem of integrable hierarchies. In: Exploring New Structures and Natural Constructions in Mathematical Physics, pp. 387–441. Math. Soc. Jap., Tokyo (2011). arXiv:0710.5356

  55. Wolf, T.: A comparison of four approaches to the calculation of conservation laws. Eur. J. Appl. Math. 13(2), 129–152 (2002). arXiv:cs/0301027v2

  56. Zabolotskaya, E.A., Khokhlov, R.V.: Quasi-plane waves in the nonlinear acoustics of confined beams. Sov. Phys. Acoust. 15, 35–40 (1969)

    Google Scholar 

  57. Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct. Anal. Appl. 13, 166–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zakharov, V.E.: Multidimensional integrable systems. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983), pp. 1225–1243. PWN, Warsaw (1984)

  59. Zakharov, V.E.: Dispersionless limit of integrable systems in (2+1) dimensions. In: Singular Limits of Dispersive Waves, pp. 165–174. Plenum Press, NY (1994)

Download references

Acknowledgements

The author is pleased to thank M. Błaszak, I.S. Krasil’shchik, M. Kunzinger, S. Leble, B. McKay, O.I. Morozov, P.J. Olver, R.O. Popovych, V. Rubtsov, I.A.B. Strachan, L. Vitagliano, and R. Vitolo for stimulating discussions and helpful comments, and to the anonymous referees for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sergyeyev.

Additional information

This research was performed within the framework of and with financial support of the OPVK program under Project CZ.1.07/2.300/20.0002. Support from the Ministry of Education, Youth and Sport of the Czech Republic (MŠMT ČR) under RVO funding for IČ47813059, as well as from the Grant Agency of the Czech Republic (GA ČR) under grant P201/12/G028, is also gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergyeyev, A. New integrable (\(3+1\))-dimensional systems and contact geometry. Lett Math Phys 108, 359–376 (2018). https://doi.org/10.1007/s11005-017-1013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1013-4

Keywords

Mathematics Subject Classification

Navigation