Skip to main content
Log in

On Linear Degeneracy of Integrable Quasilinear Systems in Higher Dimensions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate (d + 1)-dimensional quasilinear systems which are integrable by the method of hydrodynamic reductions. In the case d ≥ 3 we formulate a conjecture that any such system with an irreducible dispersion relation must be linearly degenerate. We prove this conjecture in the 2-component case, providing a complete classification of multi- dimensional integrable systems in question. In particular, our results imply the non- existence of 2-component integrable systems of hydrodynamic type for d ≥ 6. In the second half of the paper we discuss a numerical and analytical evidence for the impossibility of the breakdown of smooth initial data for linearly degenerate systems in 2 + 1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds): Handbook of Mathematical Functions with Formulae, Graphs and Mathematical Tables. Wiley-Interscience, New York (1972)

    Google Scholar 

  2. Belokolos E.D., Bobenko A.I., Enolskii V.Z., Its A.R., Matveev V.B.: Algebro- Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  3. Bogdanov, L.V.: On a class of multidimensional integrable hierarchies and their reductions. arXiv:0810.2397 (2008)

  4. Brenier Y.: A note on deformations of 2D fluid motions using 3D Born-Infeld equations. Monatsh. Math. 142(1–2), 113–122 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenier Y.: Hydrodynamic structure of the augmented Born-Infeld equations. Arch. Ration. Mech. Anal. 172(1), 65–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burnat M.: The method of characteristics and Riemann’s invariants for multidimensional hyperbolic systems. Sibirsk. Mat. Z. 11, 279–309 (1970)

    MathSciNet  Google Scholar 

  7. Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  8. Dubrovin B.A., Novikov S.P.: Hydrodynamics of weakly deformed soliton lattices: differential geometry and Hamiltonian theory. Russ. Math. Surv. 44(6), 35–124 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dunajski M.: A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type. J. Geom. Phys. 51(1), 126–137 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Dunajski M., Sparling G.: A dispersionless integrable system associated to Diff(S 1) gauge theory. Phys. Lett. A 343(1–3), 129–132 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dunajski M., Grant J.D.E., Strachan I.A.B.: Multidimensional integrable systems and deformations of Lie algebra homomorphisms. J. Math. Phys. 48(9), 093502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ferapontov E.V.: Integration of weakly nonlinear hydrodynamic systems in Riemann invariants. Phys. Lett. A 158, 112–118 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ferapontov E.V., Khusnutdinova K.R.: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ferapontov E.V., Khusnutdinova K.R.: The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type. J. Phys. A: Math. Gen. 37(8), 2949–2963 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ferapontov E.V., Khusnutdinova K.R.: Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability. J. Math. Phys. 45(6), 2365–2377 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Frauendiener J., Klein C.: Hyperelliptic theta functions and spectral methods. J. Comput. Appl. Math. 167, 193 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Gibbons J., Kodama Y.: A method for solving the dispersionless KP hierarchy and its exact solutions II. Phys. Lett. A 135(3), 167–170 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gibbons J., Tsarev S.P.: Reductions of the Benney equations. Phys. Lett. A 211, 19–24 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Godunov S.K.: An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  20. Grundland A., Zelazny R.: Simple waves in quasilinear hyperbolic systems. I, II. Riemann invariants for the problem of simple wave interactions. J. Math. Phys. 24(9), 2305–2328 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Klein C., Sparber C., Markowich P.: Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation. J. Nonlinear Sci. 17(5), 429–470 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Klein C.: Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 29, 116–135 (2008)

    Google Scholar 

  23. Liu T.P.: Development of singularities in the nonlinear waves for quasi-linear hyperbolic PDEs. J. Differ. Equ. 33, 92–111 (1979)

    Article  MATH  Google Scholar 

  24. Majda, A.: Compressible fluid flows and systems of conservation laws in several space variables. In: Applied Mathematical Science, vol. 53. Springer-Verlag, New York (1984)

  25. Manakov S.V., Santini P.M.: Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation. Phys. Lett. A 359(6), 613–619 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Manakov S.V., Santini P.M.: A hierarchy of integrable partial differential equations in dimension 2 + 1, associated with one-parameter families of vector fields. Theor. Math. Phys. 152(1), 1004–1011 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Manakov S.V., Santini P.M.: On the solutions of the second heavenly and Pavlov equations. J. Phys. A 42(40), 404013 (2009)

    Article  MathSciNet  Google Scholar 

  28. Martinez-Alonso L., Shabat A.B.: Towards a theory of differential constraints of a hydrodynamic hierarchy. J. Nonlinear Math. Phys. 10(2), 229–242 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Martinez-Alonso, L., Shabat, A.B.: Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type. Phys. lett. A 299(4), 359–365 (2002); Phys. Lett. A 300(1), 58–64 (2002)

    Google Scholar 

  30. Matveev V.B., Salle M.A.: Darboux Transformations and Solitons. Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  31. Odesskii A.V.: A family of (2 + 1)-dimensional hydrodynamic type systems possessing a pseudopotential. Selecta Math. 13(4), 727–742 (2008)

    Article  MathSciNet  Google Scholar 

  32. Odesskii, A.V., Sokolov, V.V.: Integrable pseudopotentials related to generalized hypergeometric functions. arXiv:0803.0086 (2007)

  33. Odesskii, A.V., Sokolov, V.V.: Systems of Gibbons-Tsarev type and integrable 3-dimensional models. arXiv:0906.3509 (2009)

  34. Pavlov M.V.: Integrable hydrodynamic chains. J. Math. Phys. 44(9), 4134–4156 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Peradzyński Z.: Riemann invariants for the nonplanar k-waves. Bull. Acad. Polon. Sci. Sr. Sci. Tech. 19, 717–724 (1971)

    MATH  Google Scholar 

  36. Rozdestvenskii B.L., Sidorenko A.D.: On the impossibility of ‘gradient catastrophe’ for weakly nonlinear systems. Z. Vycisl. Mat. i Mat. Fiz. 7, 1176–1179 (1967)

    MathSciNet  Google Scholar 

  37. Rozdestvenskii, B.L., Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics. Translated from the second Russian edition by J. R. Schulenberger. Translations of Mathematical Monographs, vol. 55. American Mathematical Society, Providence (1983)

  38. Serre, D.: Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock waves. Cambridge University Press (1999); Systems of Conservation Laws 2: Geometric Structures, Oscillations, and Initial-Boundary Value Problems. Cambridge University Press (2000)

  39. Sidorov A.F., Shapeev V.P., Yanenko N.N.: The Method of Differential Constraints and its Applications in Gas Dynamics. Nauka, Novosibirsk (1984)

    Google Scholar 

  40. Tsarev S.P.: Geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph method. Izvestija AN USSR Math. 54(5), 1048–1068 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klein.

Additional information

This paper is dedicated to V.B. Matveev on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferapontov, E.V., Khusnutdinova, K.R. & Klein, C. On Linear Degeneracy of Integrable Quasilinear Systems in Higher Dimensions. Lett Math Phys 96, 5–35 (2011). https://doi.org/10.1007/s11005-011-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0462-4

Mathematics Subject Classification (2000)

Keywords

Navigation