Skip to main content
Log in

Quantum Random Walks and Vanishing of the Second Hochschild Cohomology

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a conditionally completely positive map \({\mathcal{L}}\) on a unital *-algebra \({\mathcal{A}}\) , we find an interesting connection between the second Hochschild cohomology of \({\mathcal{A}}\) with coefficients in the bimodule \({E_{\mathcal L} = {\mathcal B}^a (\mathcal{A} \oplus M)}\) of adjointable maps, where M is the GNS bimodule of \({\mathcal{L}}\) , and the possibility of constructing a quantum random walk [in the sense of (Attal et al. in Ann Henri Poincar 7(1):59–104, 2006; Lindsay and Parthasarathy in Sankhya Ser A 50(2):151–170, 1988; Sahu in Quantum stochastic Dilation of a class of Quantum dynamical Semigroups and Quantum random walks. Indian Statistical Institute, 2005; Sinha in Banach Center Publ 73:377–390, 2006)] corresponding to \({\mathcal{L}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attal S. and Pautrat Y. (2006). From repeated to continuous quantum interactions. Ann. Henri Poincar 7(1): 59–104

    Article  MATH  MathSciNet  Google Scholar 

  2. Belton, Alexander C.R.: Random-walk approximation to vacuum cocycles. http://lanl.arxiv.org/math.OA/0702700

  3. Christensen E. and Evans D.E. (1979). Cohomology of operator algebras and quantum dynamical semigroups. J. Lond. Math. Soc. 20: 358–368

    Article  MATH  MathSciNet  Google Scholar 

  4. Evans, D.E., Lewis, J.T.: Dilation of irreversible evolutions in algebraic quantum theory. Communications in the Dublin Institute of Advanced Studies, vol. 24, Dublin (1977)

  5. Franz, U., Skalski, A.: Approximation of quantum Lévy processes by quantum random walks. In: Proceedings of the Indian Academy of Sciences (Mathematical Sciences). http://lanl.arxiv.org/math.FA/0703339 (to appear)

  6. Gerstenhaber M. (1964). On the deformation of rings and algebras. Ann. of Math. 79(2): 59–103

    Article  MathSciNet  Google Scholar 

  7. Goswami D. and Sinha K.B. (2007). Quantum Stochastic Processes and Non-commutative Geometry. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  8. Goswami D. and Sinha K.B. (1999). Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra. Commun. Math. Phys. 205(2): 377–403

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hochschild G. (1945). On the cohomology groups of an associative algebra. Ann. Math. 46: 58–67

    Article  MathSciNet  Google Scholar 

  10. Hudson, R.L. : Quantum diffusions and cohomology of algebras. In: Proceedings of the 1st World Congress of the Bernoulli Society (Tashkent, 1986), vol. 1, pp. 479–483. VNU Sci. Press, Utrecht (1987)

  11. Hudson R.L. and Parthasarathy K.R. (1984). Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3): 301–323

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Lindsay J.M. and Parthasarathy K.R. (1988). The passage from random walk to diffusion in quantum probability II. Sankhyā Ser. A 50(2): 151–170

    MATH  MathSciNet  Google Scholar 

  13. Parthasarathy K.R. (1992). An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics, vol. 85. Birkhäuser Verlag, Basel

    Google Scholar 

  14. Sahu, L.: Quantum stochastic dilation of a class of quantum dynamical semigroups and quantum random walks. Ph. D. Thesis, Indian Statistical Institute (2005)

  15. Sahu, L.: Quantum random walks and their convergence to Evans–Hudson flows. In: Proceedings of the Indian Academy of Sciences (Mathematical Sciences) (to appear)

  16. Sinclair, A.M., Smith R.R.: Hochschild cohomology of von Neumann algebras. London Mathematical Society Lecture Note Series, vol. 203, Cambridge University Press, Cambridge (1995)

  17. Sinha K.B. (2006). Quantum random walks revisited. Banach Center Publ. 73: 377–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahu.

Additional information

D. Goswami was supported by a project funded by the Indian National Academy of Sciences.

L. Sahu had research support from the National Board of Higher Mathematics, DAE (India) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, D., Sahu, L. Quantum Random Walks and Vanishing of the Second Hochschild Cohomology. Lett Math Phys 84, 1–14 (2008). https://doi.org/10.1007/s11005-008-0233-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0233-z

Mathematics Subject Classification (2000)

Keywords

Navigation