Skip to main content
Log in

Hartle–Hawking Wave-Function for Flux Compactifications: the Entropic Principle

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We argue that the topological string partition function, which has been known to correspond to a wave-function, can be interpreted as an exact “wave-function of the universe” in the mini-superspace sector of physical superstring theory. This realizes the idea of Hartle and Hawking in the context of string theory, including all loop quantum corrections. The mini-superspace approximation is justified as an exact description of BPS quantities. Moreover this proposal leads to a conceptual explanation of the recent observation that the black hole entropy is the square of the topological string wave-function. This wave-function can be interpreted in the context of flux compactification of all spatial dimensions as providing a physical probability distribution on the moduli space of string compactification. Euclidean time is realized holographically in this setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ooguri H., Strominger A., Vafa C. (2004). Black hole attractors and the topological string. Phys. Rev. D 70, 106007

    Article  ADS  MathSciNet  Google Scholar 

  • Hartle J.B., Hawking S.W. (1983). Wave function of the universe. Phys. Rev. D 28, 2960

    Google Scholar 

  • Firouzjahi H., Sarangi S., Tye S.-H. (2004). Spontaneous creation of inflationary Universes and the cosmic landscape. JHEP 0409, 060 (2004) hep-th/0406107

    Article  ADS  MathSciNet  Google Scholar 

  • Kobakhidze A., Mersini-Houghton, L.: Birth of the universe from the landscape of string theory. hep-th/0410213

  • Ferrara S., Kallosh R., Strominger A. (1995). \({\cal N} = 2\) extremal black holes. Phys. Rev. D 52, 512

    Article  MathSciNet  Google Scholar 

  • Strominger A. (1996). Macroscopic entropy of \({\cal N} = 2\) black holes. Phys. Lett. B 383, 39

    Article  ADS  MathSciNet  Google Scholar 

  • Kachru S., Kallosh R., Linde A., Trivedi S.P. (2003). De Sitter vacua in string theory. Phys. Rev. D 68, 046005

    Article  ADS  MathSciNet  Google Scholar 

  • Gukov S., Vafa C., Witten E. CFT’s from Calabi–Yau four-folds. Nucl. Phys. B 584, 69 (2000) (Erratum-ibid. B 608, 477 (2001)) hep-th/9906070

    Google Scholar 

  • Giddings S.B., Kachru S., Polchinski J. (2002). Hierarchies from fluxes in string compactifications. Phys. Rev. D 66, 106006

    Article  ADS  MathSciNet  Google Scholar 

  • Behrndt K., Lopes Cardoso G., de Wit B., Kallosh R., Lüst D., Mohaupt T. (1997). Classical and quantum \({\cal N} = 2\) supersymmetric black holes. Nucl. Phys. B 488, 236

    Article  MATH  ADS  Google Scholar 

  • Ferrara S., Gibbons G.W., Kallosh R. (1997). Black holes and critical points in moduli space. Nucl. Phys. B 500, 75

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Denef, F.: Supergravity flows and D-brane stability. JHEP 0008, 050 (2000) hep-th/0005049

  • Cecotti S., Vafa C. (1991). Topological anti-topological fusion. Nucl. Phys. B 367, 359

    Article  ADS  MathSciNet  Google Scholar 

  • Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. hep-th/0005247

  • Goldstein H., Poole C.P., Safko J.L. (2002). Classical mechanics. Addison-Wesley, Reading, USA

    Google Scholar 

  • Witten, E.: Quantum background independence in string theory. hep-th/9306122

  • Bershadsky M., Ceccoti S., Ooguri H., Vafa C. (1994). Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311

    Article  MATH  ADS  Google Scholar 

  • Lopes Cardoso G., de Wit B., Mohaupt T. (2000). Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes. Nucl. Phys. B 567, 87

    Article  MATH  Google Scholar 

  • Vafa, C.: Two-dimensional Yang-Mills, black holes and topological strings. hep-th/0406058

  • Aganagic, M., Ooguri, H., Saulina, N., Vafa, C.: Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings. hep-th/0411280

  • Dabholkar, A.: Exact counting of black hole microstates. hep-th/0409148

  • Dabholkar, A., Denef, F., Moore, G.W., Pioline, B.: Exact and asymptotic degeneracies of small black holes. hep-th/0502157

  • Verlinde, E.: Attractors and the holomorphic anomaly. hep-th/0412139

  • Dijkgraaf, R., Verlinde, E., Vonk, M.: On the partition sum of the NS five-brane. hep-th/0205281

  • Dijkgraaf, R., Gukov, S., Neitzke, A., Vafa, C.: Topological M-theory as unification of form theories of gravity. hep-th/0411073

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirosi Ooguri.

Additional information

Mathematics Subject Classifications: 81T20, 83C47, 83E30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooguri, H., Vafa, C. & Verlinde, E. Hartle–Hawking Wave-Function for Flux Compactifications: the Entropic Principle. Lett Math Phys 74, 311–342 (2005). https://doi.org/10.1007/s11005-005-0022-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-005-0022-x

Keywords

Navigation