Skip to main content
Log in

Exact Conditioning of Gaussian Fields on Wavelet Coefficients

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

A new approach is presented to ensure exact conditioning of Gaussian fields on wavelet decomposition coefficients and hard data. The approach uses a matrix formulation of discrete wavelet decomposition enabling to compute all the required covariances and cross-covariances between hard data, points to simulate and the imposed wavelet coefficients at all scales. Two small examples show that the approach reproduces exactly the information provided, even when the wavelet information is unrelated to the true underlying image. For larger images, the approach of post-conditioning by cokriging is used to palliate the strong memory requirements of the matrix approach. The modified method remains exact and is shown to be computationally realistic for large problems. This marks a significant improvement over previously published methods where conditioning to wavelet coefficients was only approximate. After soft data calibration to wavelet coefficients at a given scale, the approach enables to simulate realizations fully consistent with the known wavelet coefficients and available hard data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson T (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York

  • Asli M, Marcotte D, Chouteau M (2000) Direct inversion of gravity data by cokriging. In: Kleingeld WJ, Krige DG (eds) Geostatistics 2000, Cape Town, South Africa, pp 64–73

  • Awotunde A, Horne R (2013) Reservoir description with integrated multiwell data using two-dimensional wavelets. Math Geosci 45:225–252

    Article  Google Scholar 

  • Azimifar Z, Fieguth P, Jernigan E (2002) Hierarchical multiscale modeling of wavelet-based correlations. In: Structural, syntactic, and statistical pattern recognition; Lecture Notes in Computer Science, vol 63, pp 850–859

  • Bosch E, Gonzlez A, Vivas J, Easley G (2009) Directional wavelets and a wavelet variogram for two-dimensional data. Math Geosci 41:611–641

    Article  Google Scholar 

  • Chatterjee S, Dimitrakopoulos R (2012) Multi-scale stochastic simulation with a wavelet-based approach. Comput Geosci 45:177–189

    Article  Google Scholar 

  • Chatterjee S, Dimitrakopoulos R, Mustapha H (2012) Dimensional reduction of pattern-based simulation using wavelet analysis. Math Geosci 44:343–374

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty, 1st edn. Wiley-Interscience, New York

    Book  Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley-Interscience, New York

    Book  Google Scholar 

  • Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Communications on pure and applied mathematics 41:909–996

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, CBMS-NSF Lecture Notes No. 61

  • Dubreuil-Boisclair C, Gloaguen E, Marcotte D, Giroux B (2011) Heterogeneous aquifer characterization from gpr tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics 76(4):J13–J25

  • Gastaldi C, Roy D, Doyen P, Den Boer L (1998) Using Bayesian simulations to predict reservoir thickness under tuning conditions. Lead Edge 17:589–593

  • Gloaguen E, Dimitrakopoulos R (2009) Two-dimensional conditional simulations based on the wavelet decomposition of training images. Math Geosci 41(6):679–701

    Article  Google Scholar 

  • Gloaguen E, Marcotte D, Chouteau M, Perroud H (2005) Borehole radar velocity inversion using cokriging and cosimulation. J Appl Geophys 57:242–259

    Article  Google Scholar 

  • Gloaguen E, Giroux B, Marcotte D, Dubreuil-Boisclair C, Tremblay-Simard P (2011) Multiple scale porosity wavelet simulation using gpr tomography and hydrogeophysical analogues, chap 7 in advances in near-surface seismology and ground-penetrating radar. SEG. doi:10.1190/1.9781560802259

  • Hielscher R, Schaeben H (2008) Multi-scale texture modeling. Math Geosci 40(1):63–82

  • Hruka M, Corea W, Seeburger D, Schweller W, Crane W (2009) Automated segmentation of resistivity image logs using wavelet transform. Math Geosci 41:703–716

    Article  Google Scholar 

  • Le Ravalec M, Noetinger B, Hu L (2000) The fft moving average generator: an efficient numerical method for generating and conditioning gaussian simulations. Math Geol 32:701–722

    Article  Google Scholar 

  • Mallat S (1999) A wavelet tour of signal processing, 2nd edn. Academic Press, New York

  • Marcotte D (1991) Cokriging with matlab. Comput Geosci 17:1265–1280

  • Marcotte D (1995) Generalized cross-validation for covariance model selection and parameter estimation. Math Geol 27:749–762

    Article  Google Scholar 

  • Meyer Y (1990) Ondelettes et opérateurs, tomes I, II et III., vol 63. Hermann, Paris

  • Milne A, Lark R (2009) Wavelet transforms applied to irregularly sampled soil data. Math Geosci 41:661–678

  • Nason G (2008) Wavelet methods in statistics with R (Use R). Springer, New York

    Book  Google Scholar 

  • Shamsipour P, Marcotte D, Chouteau M, Keeting P (2010) 3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics 71:1–10

  • Strang G, Nguyen T (2002) Wavelets and filter banks, vol 63. SIAM, New Delhi

  • Tran T, Mueller U, Bloom L (2001) Conditional simulation of two-dimensional random processes using Daubechies wavelets. In: Proceeding of the MODSIM 2001 international congress on modelling and simulation. Modelling and simulation society of Australia and New Zealand, pp 1991–1996

  • Vidakovic B (1999) Statistical modeling by wavelets. Wiley, New York

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Wang H, Vieira J (2010) 2-D wavelet transforms in the form of matrices and application in compressed sensing. In: Proceedings of the 8th World Congress on Intelligent Control and Automation July 6–9 2010. Jinan, China, pp 35–39

  • Watkins L, Neupauer GM, Compo RM (2009) Wavelet analysis and filtering to identify dominant orientations of permeability anisotropy. Math Geosci 41:643–659

    Article  Google Scholar 

  • Zeldin B, Spanos P (1995) Random field simulation using wavelet bases. In: Lemmaire M, Favre JL, Mébarki A (eds) Applications of statistics and probability-civil engineering reliability and risk analysis. Balkema, Rotterdam, pp 1275–1983

    Google Scholar 

  • Zeldin B, Spanos P (1996) Random field representation and synthesis using wavelet bases. J Appl Mech 63:946–952

    Article  Google Scholar 

  • Zhang L, Bai G, Zhao Y (2012) A method for eliminating caprock thickness influence on anomaly intensities in geochemical surface survey for hydrocarbons. Math Geosci 44:929–944

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was financed by the National Science and Engineering Research Council of Canada. Helpful comments from two anonymous reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Marcotte.

Appendix: Proof of Exact Conditioning on HD and Wavelet Coefficients

Appendix: Proof of Exact Conditioning on HD and Wavelet Coefficients

The sampling matrix \(\mathbf {H}\), of size \( m \times n_t\) (with \(n_t=n_1+n_2\)) recovers all the image pixels (HD or to simulate) in vector \(\mathbf {y}\). Each row of this matrix has a single 1 in the column corresponding to a pixel, and 0 elsewhere. One has

$$\begin{aligned} \mathbf {z}_{\mathbf {sim}}=\mathbf {Hy}_{\mathbf {sim}}, \end{aligned}$$
(13)

where \(\mathbf {z}_{\mathbf {sim}}\) is the vector of length \(m\) extracted from the simulated vector \(\mathbf {y}_{\mathbf {sim}}=\left[ \begin{array}{c} \mathbf {y}_{\mathbf {1 \cdot 2}} \\ \mathbf {y}_{\mathbf {2}} \end{array} \right] \), and where \(\mathbf {y}_{\mathbf {1 \cdot 2}}\) is obtained from Eq. 11.

Defining the \(m \times n_t\) matrix \({\tilde{\mathbf {F}}}\) as simply \(\mathbf {F}\) with lines reordered following the partition in \(\mathbf {y}\), matrix \({\tilde{\mathbf {F}}}\) can also be partitioned as

$$\begin{aligned} {\tilde{\mathbf {F}}} = \left[ \begin{array}{c} \tilde{\mathbf {F}}_{\mathbf {1}}\\ \tilde{\mathbf {F}}_{\mathbf {2}}\\ \end{array} \right] .\ \end{aligned}$$
(14)

With these definitions, one has

$$\begin{aligned} \mathbf {K}_{\mathbf {11}}=\tilde{\mathbf {F}}_{\mathbf {1}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {1}}^{\mathbf {T}}, \,\,\mathbf {K}_{\mathbf {12}}=\tilde{\mathbf {F}}_{\mathbf {1}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^\mathbf {T}, \quad \text {and}\quad \mathbf {K}_{\mathbf {22}}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_\mathbf {2}^{\mathbf {T}}. \end{aligned}$$
(15)

Using Eqs. 10, 11, and 15 and posing \(\mathbf {r=Lx}\), and noting that \({\mathbf {y}}_{\mathbf {2}}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}\)

$$\begin{aligned} \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}_{\mathbf {sim}}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {Hy}_{\mathbf {sim}} = \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H} \left[ \begin{array}{c} \tilde{\mathbf {F}}_{\mathbf {1}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^\mathbf {T}(\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}})^{\mathbf {-1}}\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}+\mathbf {r} \\ \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z} \end{array} \right] . \end{aligned}$$
(16)

The latter can be rewritten as

$$\begin{aligned} \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}_{\mathbf {sim}}=\tilde{\mathbf {F}}_\mathbf {2}\mathbf {H}\tilde{\mathbf {F}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_\mathbf {2}^\mathbf {T}(\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}})^{\mathbf {-1}}\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}+\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H} \left[ \begin{array}{c} \mathbf {r}\\ \mathbf {0} \end{array} \right] . \end{aligned}$$
(17)

Because \(\mathbf {H}\tilde{\mathbf {F}}=\mathbf {I}_{\mathbf {m}}\), one gets

$$\begin{aligned} \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}_{\mathbf {sim}}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}+\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H} \left[ \begin{array}{c} \mathbf {r}\\ \mathbf {0} \end{array} \right] . \end{aligned}$$
(18)

Using Eqs. 10 and 15, the vector \(\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H}\left[ \begin{array}{c} \mathbf {r}\\ \mathbf {0} \end{array} \right] \) has variance-covariance matrix

$$\begin{aligned} \mathbf {K}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H} \left[ \begin{array}{cc} \tilde{\mathbf {F}}_{\mathbf {1}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {1}}^{\mathbf {T}} - \tilde{\mathbf {F}}_{\mathbf {1}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^\mathbf {T}(\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}})^{\mathbf {-1}}\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {1}}^{\mathbf {T}} &{} \mathbf {0}\\ \mathbf {0} &{} \mathbf {0} \end{array} \right] . \mathbf {H}^{\mathbf {T}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}} \end{aligned}$$
(19)

The right member can be rewritten, as

$$\begin{aligned} \mathbf {K}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {H}\tilde{\mathbf {F}} \left( \mathbf {K}_{\mathbf {zz}} - \mathbf {K}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}}(\tilde{\mathbf {F}}_{\mathbf {2}}{\mathbf {K}}_{\mathbf {zz}}\tilde{\mathbf {F}}_{\mathbf {2}}^{\mathbf {T}})^{\mathbf {-1}}\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {K}_{\mathbf {zz}} \right) \tilde{\mathbf {F}}^{\mathbf {T}} \mathbf {H}^{\mathbf {T}} \tilde{\mathbf {F}}_\mathbf {2}^{\mathbf {T}} \end{aligned}$$
(20)

using again the equality \(\mathbf {H}\tilde{\mathbf {F}}=\mathbf {I}_{\mathbf {m}}\), and simplifying, one gets \(\mathbf {K}=\mathbf {0}\), which implies that \(\tilde{\mathbf {F}}_{2}\mathbf {H}\left[ \begin{array}{c} \mathbf {r}\\ \mathbf {0} \end{array} \right] = \mathbf {0}\) as \(E[\mathbf {r}]=\mathbf {0}\). Hence, substituting in Eq. 18,

$$\begin{aligned} \tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}_{\mathbf {sim}}=\tilde{\mathbf {F}}_{\mathbf {2}}\mathbf {z}, \end{aligned}$$
(21)

which proves that all the HD data and wavelet coefficients are exactly reproduced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcotte, D., Gloaguen, E. Exact Conditioning of Gaussian Fields on Wavelet Coefficients. Math Geosci 47, 277–300 (2015). https://doi.org/10.1007/s11004-014-9552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-014-9552-z

Keywords

Navigation