Skip to main content
Log in

Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acar, E., Rais-Rohani, M.: Ensemble of metamodels with optimized weight factors. Struct. Multidiscip. Optim. 37(3), 279–294 (2009)

    Article  Google Scholar 

  • Ahmad, Z., Thambiratnam, D.P.: Crushing response of foam-filled conical tubes under quasi-static axial loading. Mater. Des. 30(7), 2393–2403 (2009)

    Article  Google Scholar 

  • Ali, M., Ohioma, E., Kraft, F., Alam, K.: Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin-Walled Struct. 94, 253–272 (2015)

    Article  Google Scholar 

  • Chen, W.: Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles. Int. J. Solids Struct. 38(44–45), 7919–7944 (2001)

    Article  MATH  Google Scholar 

  • Chen, W., Wierzbicki, T.: Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 39(4), 287–306 (2001)

    Article  Google Scholar 

  • Fan, Z., Lu, G., Liu, K.: Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 55, 80–89 (2013)

    Article  Google Scholar 

  • Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M.F.: A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput. Struct. 83(25–26), 2121–2136 (2005)

    Article  Google Scholar 

  • Fang, J., Gao, Y., Sun, G., Zhang, Y., Li, Q.: Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact. Comput. Mater. Sci. 90, 265–275 (2014)

    Article  Google Scholar 

  • Faruque, O., Guimberteau, T., Saha, N.K.: Extruded aluminum crash can topology for maximizing specific energy absorption. Energy Absorption (2008)

  • Goel, T., Haftka, R., Shyy, W., Queipo, N.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33(3), 199–216 (2007)

    Article  Google Scholar 

  • Hanssen, A.G., Langseth, M., Hopperstad, O.S.: Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng 24(4), 347–383 (2000)

    Article  MATH  Google Scholar 

  • Hou, S., Li, Q., Long, S., Yang, X., Li, W.: Crashworthiness design for foam filled thin-wall structures. Mater. Des. 30(6), 2024–2032 (2009)

    Article  Google Scholar 

  • Jiao, H., Zhang, Y., Chen, W.: The lightweight design of low RCS pylon based on structural bionics. J. Bionic Eng. 7(2), 182–190 (2010)

    Article  Google Scholar 

  • Kavi, H., Toksoy, A.K., Guden, M.: Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient. Mater. Des. 27(4), 263–269 (2006)

    Article  Google Scholar 

  • Kim, H.-S.: New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct. 40(4), 311–327 (2002)

    Article  Google Scholar 

  • Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multidiscip. Optim. 35(6), 561–569 (2007)

    Article  Google Scholar 

  • Liu, Y.: Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct. 46(12), 1329–1337 (2008a)

    Article  Google Scholar 

  • Liu, Y.: Optimum design of straight thin-walled box section beams for crashworthiness analysis. Finite Elem. Anal. Des. 44(3), 139–147 (2008b)

    Article  Google Scholar 

  • Liu, Y.: Collapse behaviour and simplified modeling of triangular cross-section columns. Indian J. Eng. Mater. Sci. 16, 71–78 (2009)

    Google Scholar 

  • Liu, Y., Dag, M.L.: Concept modeling of tapered thin-walled tubes. J Zhejiang Univ Sci A 10(1), 44–53 (2009)

    Article  Google Scholar 

  • Liu, Y., Day, M.L.: Bending collapse of thin-walled circular tubes and computational application. Thin-Walled Struct. 46(4), 442–450 (2008)

    Article  Google Scholar 

  • Liu, S., Tong, Z., Tang, Z., Liu, Y., Zhang, Z.: Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin-Walled Struct. 88, 70–81 (2015)

    Article  Google Scholar 

  • Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE—a MatLab Kriging toolbox. Technical Report IMM-TR-2002-12, Technical University of Denmark (2002)

  • LS-DYNA keyword user’s manual: nonlinear dynamic analysis of structures. Version 971, vols. 1–2. California, Livermore Software Technology Corporation, May 2007

  • Meguid, S.A., Attia, M.S., Monfort, A.: On the crush behaviour of ultralight foam-filled structures. Mater. Des. 25(3), 183–189 (2004)

    Article  Google Scholar 

  • Mirfendereski, L., Salimi, M., Ziaei-Rad, S.: Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. Int. J. Mech. Sci. 50(6), 1042–1057 (2008)

    Article  Google Scholar 

  • Murugan, P., Kannan, S., Baskar, S.: NSGA-II algorithm for multi-objective generation expansion planning problem. Electr. Power Syst. Res. 79(4), 622–628 (2009)

    Article  Google Scholar 

  • Najafi, A., Rais-Rohani, M.: Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes. Thin-Walled Struct. 49(1), 1–12 (2011)

    Article  Google Scholar 

  • Santosa, S., Wierzbicki, T.: Effect of an ultralight metal filler on the bending collapse behavior of thin-walled prismatic columns. Int. J. Mech. Sci. 41(8), 995–1019 (1999)

    Article  MATH  Google Scholar 

  • Seitzberger, M., Rammerstorfer, F.G., Degischer, H.P., Gradinger, R.: Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mech. 125(1–4), 93–105 (1997)

    Article  MATH  Google Scholar 

  • Seitzberger, M., Rammerstorfer, F.G., Gradinger, R., Degischer, H.P., Blaimschein, M., Walch, C.: Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Struct. 37(30), 4125–4147 (2000)

    Article  Google Scholar 

  • Song, H.-W., Fan, Z.-J., Yu, G., Wang, Q.-C., Tobota, A.: Partition energy absorption of axially crushed aluminum foam-filled hat sections. Int. J. Solids Struct. 42(9–10), 2575–2600 (2005)

    Article  Google Scholar 

  • Sun, G., Xu, F., Li, G., Li, Q.: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int. J. Impact Eng 64, 62–74 (2014)

    Article  Google Scholar 

  • Tai, Y.S., Huang, M.Y., Hu, H.T.: Axial compression and energy absorption characteristics of high-strength thin-walled cylinders under impact load. Theoret. Appl. Fract. Mech. 53(1), 1–8 (2010)

    Article  Google Scholar 

  • Tang, Z., Liu, S., Zhang, Z.: Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Struct. 62, 75–84 (2013)

    Article  Google Scholar 

  • Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2006)

    Article  Google Scholar 

  • Yin, H., Wen, G., Wu, X., Qing, Q., Hou, S.: Crashworthiness design of functionally graded foam-filled multi-cell thin-walled structures. Thin-Walled Struct. 85, 142–155 (2014a)

    Article  Google Scholar 

  • Yin, H., Wen, G., Fang, H., Qing, Q., Kong, X., Xiao, J., et al.: Multiobjective crashworthiness optimization design of functionally graded foam-filled tapered tube based on dynamic ensemble metamodel. Mater. Des. 55, 747–757 (2014b)

    Article  Google Scholar 

  • Zhang, X., Zhang, H.: Energy absorption of multi-cell stub columns under axial compression. Thin-Walled Struct. 68, 156–163 (2013)

    Article  Google Scholar 

  • Zhang, X., Zhang, H.: Axial crushing of circular multi-cell columns. Int. J. Impact Eng 65, 110–125 (2014)

    Article  Google Scholar 

  • Zhang, X., Cheng, G., Zhang, H.: Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin-Walled Struct. 44(11), 1185–1191 (2006)

    Article  Google Scholar 

  • Zhao, L., Ma, J., Wang, T., Xing, D.: Lightweight design of mechanical structures based on structural bionic methodology. J Bion Eng 7, S224–S231 (2010)

    Article  Google Scholar 

  • Zhao, L., Ma, J., Chen, W., Guo, H.: Lightweight design and verification of gantry machining center crossbeam based on structural bionics. J Bion Eng 8(2), 201–206 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported jointly by the National Science Foundation for Young Scientists of China (No. 11302075), the National Science Fund for Distinguished Young Scholars of China (No. 11225212), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Nos. 20120161120009 and 20120161130001), the Natural Science Foundation of Hunan Province of China (No. 14JJ3061), and the Young Teacher Development Plan of Hunan University of China. The authors also would like to thank the support from the Joint Center for Intelligent New Energy Vehicle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfeng Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Yin, H., Fang, H. et al. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading. Int J Mech Mater Des 12, 563–576 (2016). https://doi.org/10.1007/s10999-016-9341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9341-6

Keywords

Navigation