Skip to main content
Log in

Stochastic nonlinear bending response of functionally graded material plate with random system properties in thermal environment

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This study deals with the stochastic nonlinear bending response of functionally graded materials (FGMs) plate with uncertain system properties subjected to transverse uniformly distributed load in thermal environments. The system properties such as material properties of each constituent’s material, volume fraction index and transverse load are taken as independent random input variables. The material properties are assumed to be temperature independent (TID) and temperature dependent (TD). The basic formulation is based on higher order shear deformation theory with von-Karman nonlinear strain kinematics using modified C 0 continuity. A direct iterative based nonlinear finite element method in conjunction with first-order perturbation technique developed by last two authors for the composite plate is extended for the FGM plate to compute the second order statistics (mean and standard deviation) of the nonlinear bending response of the FGM plates. Effects of TD, TID material properties, aspect ratios, volume fraction index and boundary conditions, uniform temperature and non-uniform temperature distribution on the nonlinear bending are presented in detail through parametric studies. The present outlined approach has been validated with the results available in the literature and independent Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F., Martins, P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69, 449–457 (2005)

    Article  Google Scholar 

  • Ghannadpour, S.A.M., Alinia, M.M.: Large deflection behavior of functionally graded plates under pressure loads. Compos. Struct. 75, 67–71 (2006)

    Article  Google Scholar 

  • Golmakani, M.E., Kadkhodayan, M.: Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories. Compos. Struct. 93, 973–982 (2011)

    Article  Google Scholar 

  • Jagtap, K.R., Lal, Achchhe., Singh, B.N.: Stochastic nonlinear free vibration analysis of elastically supported functionally graded materials plate with system randomness in thermal environment. Compos. Struct. 93(12), 3185–3199 (2011)

    Article  Google Scholar 

  • Kitipornchai, S., Yang, J., Liew, K.M.: Random vibration of functionally graded laminates in thermal environments. Comput. Methods Appl. Mech. Eng. 195, 1075–1095 (2006)

    Article  MATH  Google Scholar 

  • Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method. Wiley, Chichester (1992)

    MATH  Google Scholar 

  • Lal, A., Singh, B.N., Kumar, R.: Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties. Struct. Eng. Mech. 27, 199–222 (2007)

    Google Scholar 

  • Lal, A., Singh, B.N., Kumar, R.: Effect of random system properties on thermal buckling analysis of laminated composite plates. Comput. Struct. 87, 1119–1128 (2009)

    Article  Google Scholar 

  • Ma, L.S., Wang, T.J.: Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int. J. Solids Struct. 40, 3311–3330 (2003)

    Article  MATH  Google Scholar 

  • Noor, A.K., Burton, W.S.: Computational models for high-temperature multilayered composite plates and shells. Appl. Mech. Rev. 45, 419–445 (1992)

    Article  Google Scholar 

  • Onkar, A.K., Yadav, D.: Non-linear response statistics of composite laminates with random material properties under random loading. Compos. Struct. 60(4), 375–383 (2003)

    Article  Google Scholar 

  • Pandit, M.K., Singh, B.N., Sheikh, A.H.: Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory. J. Aerosp. Eng. ASCE 23, 14–23 (2010)

    Article  Google Scholar 

  • Praveen, G.N., Reddy, J.N.: Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Energy and Variational Methods in Applied Mechanics. Wiley, New York (1984)

    MATH  Google Scholar 

  • Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  • Reddy, J.N., Chin, C.D.: Thermoelastical analysis of functionally graded cylinders and plates. Int. J. Therm. Stress. 21, 593–629 (1998)

    Article  Google Scholar 

  • Shaker, A., Abdelrahman, W., Tawfik, M., Sadek, E.: Stochastic finite element analysis of the free vibration of functionally graded material plates. Comput. Mech. 41, 707–714 (2008a)

    Article  MATH  Google Scholar 

  • Shaker, A., Abdelrahman, W., Tawfik, M., Sadek, E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41, 493–501 (2008b)

    Article  MATH  Google Scholar 

  • Shankara, C.A., Iyenger, N.G.R.: A C0 element for the free vibration analysis of laminated composite plates. J. Sound Vib. 191, 721–738 (1996)

    Article  Google Scholar 

  • Shen, H.S.: Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. Int. J. Mech. Sci. 44, 561–584 (2002)

    Article  MATH  Google Scholar 

  • Shen, H.S.: Nonlinear thermal bending response of FGM plates due to heat conduction. Compos. Part B Eng. 38, 201–215 (2007)

    Article  Google Scholar 

  • Shen, H.S.: Functionally Graded Materials: Nonlinear Analysis of Plate and Shells. CRC Press/Taylor and Frances Group, New York (2009)

    Book  Google Scholar 

  • Singh, B.N., Yadav, D., Iyengar, N.G.R.: Natural frequencies of composite plates with random material properties using higher order shear deformation theory. Int. J. Mech. Sci. 43, 2193–2214 (2001a)

    Article  MATH  Google Scholar 

  • Singh, B.N., Yadav, D., Iyengar, N.G.R.: Free vibration of laminated spherical panels with random material properties. J. Sound Vib. 244, 321–338 (2001b)

    Article  Google Scholar 

  • Singh, B.N., Yadav, D., Iyengar, N.G.R.: A C0 element for free vibration of composite plates with uncertain material properties. Adv. Comp. Mater. 11, 331–350 (2003)

    Article  Google Scholar 

  • Singh, B.N., Lal, A., Kumar, R.: Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties. Eng. Struct. 30, 1101–1112 (2008)

    Article  Google Scholar 

  • Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites. Part 2 Thermomechanical behavior. Int. Mater. Rev. 42, 85–116 (1997)

    Article  Google Scholar 

  • Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials. MacMillan, New York (1967)

    Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38, 7409–7421 (2001)

    Article  MATH  Google Scholar 

  • Yang, J., Shen, H.S.: Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Composites B 34, 103–115 (2003)

    Article  Google Scholar 

  • Yang, J., Kitipornchai, S., Liew, K.M.: Second order statistic of the elastic buckling of functionally graded rectangular plates. Compos. Sci. Technol. 65, 1165–1175 (2005a)

    Article  Google Scholar 

  • Yang, J., Liew, K.M., Kitipornchai, S.: Stochastic analysis of compositionally graded plates with system randomness under static loading. Int. J. Mech. Sci. 47, 1519–1541 (2005b)

    Article  MATH  Google Scholar 

  • Zhang, Y., Chen, S., Lue, Q., Liu, T.: Stochastic perturbation finite elements. Comput. Struct. 23, 1831–1845 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achchhe Lal.

Appendix

Appendix

$$ \left( {A_{ij} ,B_{ij} ,D_{ij} ,E_{ij} ,F_{ij} ,H_{ij} } \right) = \int\limits_{ - h/2}^{h/2} {Q_{ij} \left( {1,z,z^{2} ,z^{3} ,z^{4} ,z^{6} } \right)} \,dz;\quad \left( {i,j = 1,2,6} \right) $$
$$ \left( {A_{ij} ,D_{ij} ,F_{ij} } \right) = \int\limits_{ - h/2}^{h/2} {Q_{ij} \left( {1,z^{2} ,z^{4} } \right)} \,dz;\quad \left( {i,j = 4,5} \right) $$
$$ \left[ {D_{3} } \right] = \left[ {\begin{array}{*{20}c} {\left[ {A_{1} } \right]} & 0 \\ {\left[ B \right]} & 0 \\ {\left[ E \right]} & 0 \\ 0 & {\left[ {A_{2} } \right]} \\ 0 & {\left[ {C_{2} } \right]} \\ \end{array} } \right],\;\left[ {D_{4} } \right] = \left[ {D_{3} } \right]^{T} \;{\text{and}}\;\left[ {D_{5} } \right] = \left[ {\begin{array}{*{20}c} {\left[ {A_{1} } \right]} & 0 \\ 0 & {\left[ {A_{2} } \right]} \\ \end{array} } \right] $$
$$ \left[ {K_{b} } \right] = \sum\limits_{i = 1}^{n} {\int\limits_{{A^{\left( e \right)} }} {\left[ {B_{b}^{\left( e \right)} } \right]^{T} \left[ {D_{b} } \right]\left[ {B_{b}^{\left( e \right)} } \right]dA} } ; $$
$$ \left[ {K_{s} } \right] = \sum\limits_{i = 1}^{n} {\int\limits_{{A^{\left( e \right)} }} {\left[ {B_{s}^{\left( e \right)} } \right]^{T} \left[ {D_{s} } \right]\left[ {B_{s}^{\left( e \right)} } \right]dA} } $$
$$ \begin{aligned} \left[ {K_{NL} \left\{ q \right\}} \right] = & \int\limits_{A} {\left[ {B_{NL} } \right]^{T} \left[ D \right]\left[ {B_{L} } \right]dA} + \frac{1}{2}\int\limits_{A} {\left[ {B_{L} } \right]^{T} \left[ D \right]\left[ {B_{NL} } \right]dA} + \frac{1}{2}\int\limits_{A} {\left[ {B_{NL} } \right]^{T} \left[ D \right]\left[ {B_{NL} } \right]dA} \\ \left[ {K_{G} } \right] = & \int\limits_{A} {\left[ {B_{NL} } \right]^{T} \left\{ N \right\}dA} = \int\limits_{A} {\left[ G \right]^{T} \left[ {\overline{N} } \right]\left[ G \right]dA} \\ \end{aligned} $$
$$ \left[ {K_{f} } \right] = \frac{1}{2}\int\limits_{A} {\left[ {B_{f} } \right]^{T} \left[ {D_{f} } \right]\left[ {B_{f} } \right]dA} $$
$$ \left\{ q \right\} = \sum\limits_{e = 1}^{NE} {\left\{ \Uplambda \right\}^{\left( e \right)} } $$
$$ \left[ {F^{T} } \right] = \sum\limits_{i = 1}^{n} {\int\limits_{{A^{\left( e \right)} }} {\left[ {\left[ {B_{1i}^{\left( e \right)} } \right]^{T} \left[ {N^{T} } \right] + \left[ {B_{b1i}^{\left( e \right)} } \right]^{T} \left[ {M^{T} } \right] + \left[ {B_{b2i}^{\left( e \right)} } \right]^{T} \left[ {P^{T} } \right]} \right]dA} } $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagtap, K.R., Lal, A. & Singh, B.N. Stochastic nonlinear bending response of functionally graded material plate with random system properties in thermal environment. Int J Mech Mater Des 8, 149–167 (2012). https://doi.org/10.1007/s10999-012-9183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9183-9

Keywords

Navigation