Skip to main content

Advertisement

Log in

Anti-proliferative and Anti-metastatic Potential of High Molecular Weight Secretory Molecules from Probiotic Lactobacillus Reuteri Cell-Free Supernatant Against Human Colon Cancer Stem-Like Cells (HT29-ShE)

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Cancer stem cells population are necessary for cancerous invasion. Previous studies have indicated anti-tumor properties of probiotic Lactobacillus reuteri. At the current study, the effect of heat-killed sonicated (HK-SON) fraction and defined molecular weight secreted fractions from L. reuteri cell-free supernatant (CFS) on invasion and apoptosis levels of HT29-ShE cells was investigated. HT29-ShE cells were treated with a range of defined molecular weight fractions derived from CFS and HK-SON. A group of the cells was treated with uninoculated sterile bacterial growth media (MRS) as the negative control for 24 h. Afterward, real-time PCR analysis was done for investigating the relative production level of MMP-9, TIMP-1, and COX-2 mRNA. Matrigel-coated insert plates were used to evaluate cell invasion. The pro-apoptotic effect of CFS and HK-SON was determined using flowcytometry, and the gelatinolytic role of MMP-9 was analyzed via gelatin zymography. HK-SON treatment and defined fractions of CFS significantly decreased the cell invasion versus the MRS group (p < 0.05). Moreover, expression level and activity of MMP-9 was considerably reduced after processing with 10–50 kD, 50–100 kD, and > 100 kD, and HK-SON fractions (p < 0.05). Furthermore, crude CFS, and > 100 kD fraction significantly up-regulated the production level of TIMP-1 (p < 0.05) and HK-SON and > 100 kD fractions significantly increased the apoptosis percentage of HT29-ShE cells. Our results indicate the anti-metastatic and anti-proliferative properties of CFS derived from L. reuteri. Findings suggest that a secretory macromolecule (s) such as a polysaccharide, nucleic acid, or protein might exert these inhibitory effects on colon cancer stem-like cells. In conclusion, our results indicated that cell-free supernatant components can be used as the anti-metastatic agent. However, this study must be performed in experimental and in vivo models for further results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A (2018) Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 75:105–114. https://doi.org/10.1016/j.tifs.2018.03.009

    Article  CAS  Google Scholar 

  • Baldwin∗ C, Millette∗ M, Oth D, Ruiz MT, Luquet FM, Lacroix M, (2010) Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 62:371–378

    Google Scholar 

  • Betsi GI, Papadavid E, Falagas ME (2008) Probiotics for the treatment or prevention of atopic dermatitis: a review of the evidence from randomized controlled trials. Am J Clin Dermatol 9(2):93–103

    Google Scholar 

  • Borthakur A, Bhattacharyya S, Kumar A, Anbazhagan AN, Tobacman JK, Dudeja PK (2013) Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS ONE 8:e75664. https://doi.org/10.1371/journal.pone.0075664

    Article  CAS  Google Scholar 

  • Burns AJ, Rowland IR (2000) Anti-carcinogenicity of probiotics and prebiotics. Curr Issues Intest Microbiol 1(1):13–24

    CAS  Google Scholar 

  • Cao H, Xu E, Liu H, Wan L, Lai M (2015) Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract 211(8):557–569. https://doi.org/10.1016/j.prp.2015.05.010

    Article  CAS  Google Scholar 

  • Chen K, Liang N, Luo X, Zhang TC (2013) Lactobacillus acidophilus strain suppresses the transcription of proinflammatory-related factors in human HT-29 cells. J Microbiol Biotechnol 23(1):64–68

    CAS  Google Scholar 

  • Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH (2006) Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 42:452–458. https://doi.org/10.1111/j.1472-765X.2006.01913.x

    Article  CAS  Google Scholar 

  • Christou N, Perraud A, Blondy S, Jauberteau MO, Battu S, Mathonnet M (2017) E-cadherin: a potential biomarker of colorectal cancer prognosis. Oncol Lett 13(6):4571–4576

    CAS  Google Scholar 

  • Cicenia A, Scirocco A, Carabotti M, Pallotta L, Marignani M, Severi C (2014) Postbiotic activities of lactobacilli-derived factors. J Clin Gastroenterol 48(Suppl 1):S18–22. https://doi.org/10.1097/mcg.0000000000000231

    Article  Google Scholar 

  • Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313. https://doi.org/10.1038/nm.2304

    Article  CAS  Google Scholar 

  • Dallas NA et al (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69(5):1951–1957. https://doi.org/10.1158/0008-5472.can-08-2023

    Article  CAS  Google Scholar 

  • de Roos NM, Katan MB (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 71(2):405–411. https://doi.org/10.1093/ajcn/71.2.405

    Article  Google Scholar 

  • Di W, Zhang L, Yi H, Han X, Zhang Y, Xin L (2018) Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol Lett 16(3):3577–3586

    Google Scholar 

  • Dick JE (2008) Stem cell concepts renew cancer research. Blood 112(13):4793–4807

    CAS  Google Scholar 

  • Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    CAS  Google Scholar 

  • Efstathiou JA et al (1999) Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc Natl Acad Sci USA 96(5):2316–2321

    CAS  Google Scholar 

  • Escamilla J, Lane MA, Maitin V (2012) Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer 64:871–878

    CAS  Google Scholar 

  • Fan F et al (2012) Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 1(1):5–16. https://doi.org/10.1002/cam4.4

    Article  CAS  Google Scholar 

  • Foye OT, Huang IF, Chiou CC, Walker WA, Shi HN (2012) Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. FEMS Immunol Med Microbiol 65(3):467–480. https://doi.org/10.1111/j.1574-695X.2012.00978.x

    Article  CAS  Google Scholar 

  • Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A (2002) Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol 33(7):708–714

    CAS  Google Scholar 

  • Han J et al (2012) RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 321(1):80–88

    CAS  Google Scholar 

  • Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc—and thereby promotes tumor growth. Cancer Cell 19(3):387–400. https://doi.org/10.1016/j.ccr.2011.01.038

    Article  CAS  Google Scholar 

  • Iwatsuki M et al (2010) Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299

    CAS  Google Scholar 

  • Jiao G et al (2013) Prognostic significance of cyclooxygenase-2 in osteosarcoma: a meta-analysis. Tumor Biol 34(5):2489–2495

    CAS  Google Scholar 

  • Kim JY et al. (2010a) Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatric Allergy Immunol 21(2p2):e386–e393.https://doi.org/10.1111/j.1399-3038.2009.00958.x

    Article  Google Scholar 

  • Kim Y, Oh S, Yun H, Oh S, Kim S (2010b) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51:123–130

    CAS  Google Scholar 

  • Kune G, Watson L (2011) Lowering the risk of rectal cancer among habitual beer drinkers by dietary means. Adv Prev Med 2011:874048. https://doi.org/10.4061/2011/874048

    Article  Google Scholar 

  • Kuugbee ED et al (2016) Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci 61(10):2908–2920

    CAS  Google Scholar 

  • Lakritz JR et al (2014) Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int J Cancer 135(3):529–540. https://doi.org/10.1002/ijc.28702

    Article  CAS  Google Scholar 

  • Li W, Li H, Bocking AD, Challis JR (2010) Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway. Biol Reprod 83(3):481–487. https://doi.org/10.1095/biolreprod.109.082578

    Article  CAS  Google Scholar 

  • Lin PW et al (2009) Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic Biol Med 47(8):1205–1211. https://doi.org/10.1016/j.freeradbiomed.2009.07.033

    Article  CAS  Google Scholar 

  • Liu TJ et al (2013) CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene 32(5):544–553. https://doi.org/10.1038/onc.2012.85

    Article  CAS  Google Scholar 

  • Liu CT, Chu FJ, Chou CC, Yu RC (2011) Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat Res 721(2):157–162. https://doi.org/10.1016/j.mrgentox.2011.01.005

    Article  CAS  Google Scholar 

  • Maghsood F, Mirshafiey A, Farahani MM, Modarressi MH, Jafari P, Motevaseli E (2018) Dual effects of cell free supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in regulation of MMP-9 by up-regulating TIMP-1 and down-regulating CD147 in PMADifferentiated THP-1 cells. Cell J 19(4):559–568. https://doi.org/10.22074/cellj.2018.4447

    Article  Google Scholar 

  • Maier TJ, Schilling K, Schmidt R, Geisslinger G, Grosch S (2004) Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochem Pharmacol 67(7):1469–1478. https://doi.org/10.1016/j.bcp.2003.12.014

    Article  CAS  Google Scholar 

  • O'Mahony L et al (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15(8):1219–1225

    CAS  Google Scholar 

  • Orlando A, Refolo MG, Messa C, Amati L, Lavermicocca P, Guerra V, Russo F (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer 64(7):1103–1111. https://doi.org/10.1080/01635581.2012.717676

    Article  CAS  Google Scholar 

  • Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321

    CAS  Google Scholar 

  • Rajoka MSR et al (2018) Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct 9(5):2705–2715

    Google Scholar 

  • Saltanatpour Z et al (2016) Transduction of an optimized recombinant lentivirus expressing E-cadherin shRNA resulted in stable downregulation of CDH1 gene and obvious cell morphological change in the human colorectal cancer cell line HT29. J Med Res Health Sci 5(11):87–93

    Google Scholar 

  • Saltanatpour Z, Johari B, Alizadeh A, Lotfinia M, Majidzadeh-A K, Nikbin B, Kadivar M (2019) Enrichment of cancer stem-like cells by the induction of epithelial-mesenchymal transition using lentiviral vector carrying E-cadherin shRNA in HT29 cell line. J Cell Physiol 234(12):22935–22946

    CAS  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829. https://doi.org/10.1016/j.cell.2009.08.017

    Article  CAS  Google Scholar 

  • Sharma P, Kaur S, Kaur R, Kaur M, Kaur S (2018) Proteinaceous secretory metabolites of probiotic human commensal Enterococcus hirae 20c, E. faecium 12a and L12b as antiproliferative agents against cancer cell lines. Front Microbiol 9:948.

  • Shen YY, Liu CX, Chen FX, Zhang Q, Zhang YZ, Zhang RR, Li YQ (2018) Effect of Clostridium butyricum and its components in different concentrations on epithelial-mesenchymal transition of ulcerative colitis. Int J Clin Exp Med 11(9):9028–9037

    CAS  Google Scholar 

  • Shi M et al (2015) PinX1 inhibits the invasion and metastasis of human breast cancer via suppressing NF-κB/MMP-9 signaling pathway. Mol Cancer 14(1):66

    Google Scholar 

  • Sicking I et al (2014) Prognostic influence of cyclooxygenase-2 protein and mRNA expression in node-negative breast cancer patients. BMC Cancer 14(1):952

    Google Scholar 

  • Takeishi S, Matsumoto A, Onoyama I, Naka K, Hirao A, Nakayama Keiichi I (2013) Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23(3):347–361. https://doi.org/10.1016/j.ccr.2013.01.026

    Article  CAS  Google Scholar 

  • Tania M, Khan MA, Fu J (2014) Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol 35:7335–7342. https://doi.org/10.1007/s13277-014-2163-y

    Article  CAS  Google Scholar 

  • Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340(1–2):195–202. https://doi.org/10.1007/s11010-010-0418-5

    Article  CAS  Google Scholar 

  • Tsilingiri K, Rescigno M (2013) Postbiotics: what else? Benef Microb 4:101–107. https://doi.org/10.3920/bm2012.0046

    Article  CAS  Google Scholar 

  • Wang SM et al (2014) Induction of HT-29 cells apoptosis by lactobacilli isolated from fermented products. Res Microbiol 165(3):202–214. https://doi.org/10.1016/j.resmic.2014.02.004

    Article  CAS  Google Scholar 

  • Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF (2001) Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 48(3):367–371

    CAS  Google Scholar 

  • White R et al (2017) Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microb 8(5):451–466

    Google Scholar 

  • Yamada M et al (2018) A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep 8(1):1–12

    Google Scholar 

  • Yan F et al (2011) Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Investig 121:2242–2253. https://doi.org/10.1172/jci44031

    Article  CAS  Google Scholar 

  • Yang YJ, Chuang CC, Yang HB, Lu CC, Sheu BS (2012) Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkappaB pathways. BMC Microbiol 12(1):38 Doi: 10.1186/1471-2180-12-38.

  • Yazdi MH, Soltan Dallal MM, Hassan ZM, Holakuyee M, Agha Amiri S, Abolhassani M, Mahdavi M (2010) Oral administration of Lactobacillus acidophilus induces IL-12 production in spleen cell culture of BALB/c mice bearing transplanted breast tumour. Br J Nutr 104(2):227–232. https://doi.org/10.1017/s0007114510000516

    Article  CAS  Google Scholar 

  • Zhang L, Li N, Caicedo R, Neu J (2005) Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. J Nutr 135(7):1752–1756. https://doi.org/10.1093/jn/135.7.1752

    Article  CAS  Google Scholar 

  • Zhou J, Xu R, He Y, Lu Q, Wang H, Kong B (2016) PDNAsite: identification of DNA-binding site from protein sequence by incorporating spatial and sequence context. Sci Rep 6:27653. https://doi.org/10.1038/srep27653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Biochemistry Department of Pasteur Institute of Iran for their technical assistance.

Funding

This study was funded and supported by the Pasteur Institute of Iran (Grant No. 933, IR.PII.REC.1395.46).

Author information

Authors and Affiliations

Authors

Contributions

Idea conception and designing the study: FM, and BJ. Data collection, and manuscript writing: FM, BJ, MR, HM, ZS. Final approval of manuscript: MK and BJ.

Corresponding author

Correspondence to Mehdi Kadivar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.

Informed Consent

The article does not contain any studies in patients by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsood, F., Johari, B., Rohani, M. et al. Anti-proliferative and Anti-metastatic Potential of High Molecular Weight Secretory Molecules from Probiotic Lactobacillus Reuteri Cell-Free Supernatant Against Human Colon Cancer Stem-Like Cells (HT29-ShE). Int J Pept Res Ther 26, 2619–2631 (2020). https://doi.org/10.1007/s10989-020-10049-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10049-z

Keywords

Navigation