Skip to main content

Advertisement

Log in

Harnessing Bioinformatic Approaches to Design Novel Multi-epitope Subunit Vaccine Against Leishmania infantum

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Kala-azar or visceral leishmaniasis (VL) is the most important vector-borne protozoan disease and a life-threatening problem in the globe due to the lack of ideal vaccines or drugs. Recent advances in immunoinformatics and bioinformatics could be a promising approach in designing a new recombinant vaccine for VL treatment. In this study, a new recombinant vaccine against Leishmania infantum (L. infantum) designed by the computational method and Gp63, Hsp70 and Kmp11 antigens from L. infantum were selected as potential immunodominant epitopes. RpfE and RpfB from Mycobacterium tuberculosis used as adjuvants for enhancing vaccine immunogenicity. bioinformatic tools were used to analyze different aspects of the designed vaccine including, protein–protein interactions, B cell epitopes, MHC class I and II epitopes, the amino acid composition of multi-epitope vaccine, immunogenic behavior, and 3D homology modeling. This study revealed that our designed recombinant vaccine is able to induce responses of the immune system against L. infantum, and may be helpful to control VL infection, after appropriate in vitro and in vivo immunological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agallou M, Margaroni M, Karagouni E (2011) Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP-11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis. Vaccine 29:5053–5064

    CAS  PubMed  Google Scholar 

  • Akhtari J, Soosaraei M, Ziaei H, Fakhar M (2017) Last decade developments on leishmania vaccines with emphasis on nanovaccines. J Mazandaran Univ Med Sci 26:232–253

    Google Scholar 

  • Ambrose M, Gatti RA (2013) Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121:4036–4045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211:943–958

    CAS  PubMed  Google Scholar 

  • Carrillo E et al (2008) Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis. Vaccine 26:1902–1911

    CAS  PubMed  Google Scholar 

  • Castro Neto AL, Brito A, Rezende AM, Magalhaes FB, de Melo Neto OP (2019) In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: identification of sources of variation and putative roles in immune evasion. BMC Genom 20:118. https://doi.org/10.1186/s12864-019-5465-z

    Article  Google Scholar 

  • Catta-Preta CM, Mottram JC (2018) Drug candidate and target for leishmaniasis. Nature Publishing Group, London

    Google Scholar 

  • Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    CAS  PubMed  Google Scholar 

  • Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Groot AS, Moise L, McMurry JA, Martin W (2009) Epitope-based Immunome-derived vaccines: a strategy for improved design and safety. Clinical applications of immunomics. Springer, Berlin, pp 39–69

    Google Scholar 

  • de Oliveira LMF et al (2015) Design, immune responses and anti-tumor potential of an HPV16 E6E7 multi-epitope vaccine. PLoS ONE 10:e0138686

    PubMed  PubMed Central  Google Scholar 

  • Dias DS et al (2018) Recombinant prohibition protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cell Immunol 323:59–69

    CAS  PubMed  Google Scholar 

  • Dimitrov I, Naneva L, Doytchinova I, Bangov I (2013) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30:846–851

    PubMed  Google Scholar 

  • Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v2: a server for in silico prediction of allergens. J Mol Model 20:2278

    PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

    Google Scholar 

  • Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emini EA, Hughes JV, Perlow D, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esboei BR, Mohebali M, Mousavi P, Fakhar M, Akhoundi B (2018) Potent antileishmanial activity of chitosan against Iranian strain of Leishmania major (MRHO/IR/75/ER): in vitro and in vivo assay. J Vector Borne Dis 55:111

    CAS  PubMed  Google Scholar 

  • Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A, Pirestani M (2018) Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii Infection. Genet Evol 62:193–204

    CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer, Berlin, pp 571–607

    Google Scholar 

  • González-Galarza FF et al (2014) Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 43:D784–D788

    PubMed  PubMed Central  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Huang F, Li J, Chen Q, Chen D, Chen J (2019) Bioinformatics analysis of four proteins of Leishmania donovani to guide epitopes vaccine design and drug targets selection. Acta Trop 191:50–59

    CAS  PubMed  Google Scholar 

  • Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J (2017) Protein–sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33:3098–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41:W384–W388

    PubMed  PubMed Central  Google Scholar 

  • Jensen LJ et al (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–437

    PubMed  Google Scholar 

  • Karplus P, Schulz G (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72:212–213

    CAS  Google Scholar 

  • Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7:8285

    PubMed  PubMed Central  Google Scholar 

  • Kim JS et al (2013) Mycobacterium tuberculosis RpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells. J Leukoc Biol 94:733–749

    CAS  PubMed  Google Scholar 

  • Kolaskar A, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174

    CAS  PubMed  Google Scholar 

  • Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA: a self-parameterizing force field. Protein 47:393–402

    CAS  Google Scholar 

  • Kumar R, Engwerda C (2014) Vaccines to prevent leishmaniasis. Clin Transl Immunol 3:e13

    Google Scholar 

  • Kumar S, Sunagar R, Gosselin EJ (2019) Bacterial protein toll-like-receptor agonists: a novel perspective on vaccine adjuvants. Front Immunol 10:1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    PubMed  PubMed Central  Google Scholar 

  • Le-Barillec K, Magalhaes JG, Corcuff E, Thuizat A, Sansonetti PJ, Phalipon A, Di Santo JP (2005) Roles for T and NK cells in the innate immune response to Shigella flexneri. J Immunol 175:1735–1740

    CAS  PubMed  Google Scholar 

  • Lovell SC et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    CAS  PubMed  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83

    PubMed  Google Scholar 

  • Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25:2200–2207

    CAS  PubMed  Google Scholar 

  • Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, Baldi P (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26:2936–2943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendran R, Jeyabaskar S, Sitharaman G, Michael RD, Paul AV (2016) Computer-aided vaccine designing approach against fish pathogens Edwardsiella tarda and Flavobacterium columnare using bioinformatics softwares. Drug Des Dev Therapy 10:1703

    CAS  Google Scholar 

  • Mazumder S, Maji M, Das A, Ali N (2011) Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS ONE 6:e14644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minhas V, Shrestha A, Wadhwa N, Singh R, Gupta SK (2016) Novel sperm and gonadotropin-releasing hormone-based recombinant fusion protein: achievement of 100% contraceptive efficacy by co-immunization of male and female mice. Mol Reprod Dev 83:1048–1059

    CAS  PubMed  Google Scholar 

  • Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 14:1377–1389

    CAS  PubMed  Google Scholar 

  • Orr MT, Beebe EA, Hudson TE, Moon JJ, Fox CB, Reed SG, Coler RN (2014) A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS ONE 9:e83884

    PubMed  PubMed Central  Google Scholar 

  • Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    CAS  PubMed  Google Scholar 

  • Peters B et al (2005) The design and implementation of the immune epitope database and analysis resource. Immunogenetics 57:326–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafati S, Gholami E, Hassani N, Ghaemimanesh F, Taslimi Y, Taheri T, Soong L (2007) Leishmania major heat shock protein 70 (HSP70) is not protective in murine models of cutaneous leishmaniasis and stimulates strong humoral responses in cutaneous and visceral leishmaniasis patients. Vaccine 25:4159–4169

    CAS  PubMed  Google Scholar 

  • Rasti S, Ghorbanzadeh B, Kheirandish F, Mousavi SG, Pirozmand A, Hooshyar H, Abani B (2016) Comparison of molecular, microscopic, and culture methods for diagnosis of cutaneous leishmaniasis. J Clin Lab Anal 30:610–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SG, Coler RN, Campos-Neto A (2003) Development of a leishmaniasis vaccine: the importance of MPL. Expert Rev Vaccines 2:239–252

    CAS  PubMed  Google Scholar 

  • Reed SG, Hsu F-C, Carter D, Orr MT (2016) The science of vaccine adjuvants: advances in TLR4 ligand adjuvants. Curr Opin Immunol 41:85–90

    CAS  PubMed  Google Scholar 

  • Saha S, Raghava G (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DTD, Alves ML, Spada JCP, Silveira R, Oliveira T, Starke-Buzetti WA (2018) Neutrophils, eosinophils, and mast cells in the intestinal wall of dogs naturally infected with Leishmania infantum. Braz J Vet Parasitol 27:430–438. https://doi.org/10.1590/s1984-296120180085

    Article  CAS  Google Scholar 

  • Solana JC et al (2017) Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 11:e0005644

    PubMed  PubMed Central  Google Scholar 

  • Stevanovic S et al (2018) In silico discovery of a substituted 6-methoxy-quinalidine with Leishmanicidal activity in Leishmania infantum. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules23040772

    Article  Google Scholar 

  • Takamatsu N, Watanabe Y, Yanagi H, Meshi T, Shiba T, Okada Y (1990) Production of enkephalin in tobacco protoplasts using tobacco mosaic virus RNA vector. FEBS Lett 269:73–76

    CAS  PubMed  Google Scholar 

  • Thomas MC, Garcia-Perez JL, Alonso C, Lopez MC (2000) Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol 19:47–57. https://doi.org/10.1089/104454900314708

    Article  CAS  PubMed  Google Scholar 

  • Uliana SR, Trinconi CT, Coelho AC (2018) Chemotherapy of leishmaniasis: present challenges. Parasitology 145:464–480

    PubMed  Google Scholar 

  • Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4:e1000048

    PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Dariushnejad.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, P., Ghorbanzadeh, V., Lashgarian, H.E. et al. Harnessing Bioinformatic Approaches to Design Novel Multi-epitope Subunit Vaccine Against Leishmania infantum. Int J Pept Res Ther 26, 1417–1428 (2020). https://doi.org/10.1007/s10989-019-09949-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09949-6

Keywords

Navigation