Skip to main content

Advertisement

Log in

A High-Throughput Synthetic Platform Enables the Discovery of Proteomimetic Cell Penetrating Peptides and Bioportides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Collectively, cell penetrating peptide (CPP) vectors and intrinsically active bioportides possess tremendous potential for drug delivery applications and the discrete modulation of intracellular targets including the sites of protein–protein interactions (PPIs). Such sequences are usually relatively short (< 25 AA), polycationic in nature and able to access the various intracellular compartments of eukaryotic cells without detrimental influences upon cellular biology. The high-throughput platform for bioportide discovery described herein exploits the discovery that many human proteins are an abundant source of potential CPP sequences which are reliably predicted using QSAR algorithms or other methods. Subsequently, microwave-enhanced solid phase peptides synthesis provides a high-throughput source of novel proteomimetic CPPs for screening purposes. By focussing upon cationic helical domains, often located within the molecular interfaces that facilitate PPIs, bioportides which act by a dominant-negative mechanism at such sites can be reliably identified within small number libraries of CPPs. Protocols that employ fluorescent peptides, routinely prepared by N-terminal acylation with carboxytetramethylrhodamine, further enable both the quantification of cellular uptake kinetics and the identification of specific site(s) of intracellular accretion. Chemical modifications of linear peptides, including strategies to promote and stabilise helicity, are compatible with the synthesis of second-generation bioportides with improved drug-like properties to further exploit the inherent selectivity of biologics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chan W, White P. (eds) (1999) Fmoc solid phase peptide synthesis, Oxford University Press, Oxford

    Google Scholar 

  • Chang YS1, Graves B, Guerlavais V, Tovar C, Packman K, To KH, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Nat Acad Sci USA 110:E3445–E3454

    Article  PubMed  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    Article  CAS  Google Scholar 

  • Cronican J, Beier KT, Davis TN, Tseng JC, Li W, Thompson DB, Shih AF, May EM, Cepko CL, Kung AL, Zhou Q, Liu DR (2011) A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol 18:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley PB, Golovin A (2005) Cation-π interactions in protein-protein interfaces. Proteins 59:231–239

    Article  CAS  PubMed  Google Scholar 

  • Derda R (ed) (2015) Peptide libraries: methods and protocols. Springer, New York

    Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  PubMed  Google Scholar 

  • Gautam A, Chaudhary K, Kumar R, Raghava GPS (2015) Computer-aided virtual screening and designing of cell-penetrating peptides. Methods Mol Biol 1324:59–69

    Article  PubMed  Google Scholar 

  • Ghoorah AW, Devignes M-D, Aborzi SZ, Smaïl-Tabbone M, Ritchie DW (2015) A structure-based classification and analysis of protein domain family binding sites and their interactions. Biology 4:327–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hällbrink M, Kilk K, Elmquist A, Lundberg P, Lindgren M, Jiang Y, Pooga M, Soomets U, Langel Ü (2005) Prediction of cell-penetrating peptides. Int J Pept Res Ther 11:249–259

    Article  CAS  Google Scholar 

  • Harada Y, Kanehira M, Fujisawa Y, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y, Katagiri T (2010) Cell-permeable peptide DEPDC1-ZNF224 interferes with transcriptional repression and oncogenicity in bladder cancer cells. Cancer Res 70:5829–5839

    Article  CAS  PubMed  Google Scholar 

  • Henchey LK, Jochim AL, Arora PS (2008) Contemporary strategies for the stabilization of peptides in the α-helical conformation. Curr Opin Chem Biol 12:692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howl J, Jones S (2008) Proteomimetic cell penetrating peptides. Int J Pept Res Ther 14:359–366

    Article  CAS  Google Scholar 

  • Howl J, Jones S (2015a) Protein mimicry and the design of bioactive cell-penetrating peptides. Method Mol Biol 1324:177–190

    Article  Google Scholar 

  • Howl J, Jones S (2015b) Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein-interactions. Expert Rev Mol Med 17:e1. https://doi.org/10.1017/erm.2014.24

    Article  CAS  PubMed  Google Scholar 

  • Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninová J, Östenson C-G, Zorko M, Östlund P, Kumar S, Langel Ü, McKeating J, Jones S (2012) Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci 69:2951–2966

    Article  CAS  PubMed  Google Scholar 

  • Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein-protein interactions. Mol Biosyst 5:924–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S, Martel C, Belzacq-Casagrande A, Brenner C, Howl J (2008) Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta Mol Cell Res 1783:849–863

    Article  CAS  Google Scholar 

  • Jones S, Holm T, Mäger I, Langel Ü. Howl J (2010) Characterisation of bioactive cell penetrating peptides from cytochrome c: protein mimicry and the development of a novel apoptogenic agent. Chem Biol 17:735–744

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Uusna J, Langel Ü, Howl J (2016) Intracellular target-specific accretion of cell penetrating peptides and bioportides: ultrastructural and biological correlates. Bioconj Chem 27:121–129

    Article  CAS  Google Scholar 

  • Keissling LK, Gestwick JS, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 4:696–703

    Article  Google Scholar 

  • Kim YW, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 6:761–771

    Article  CAS  PubMed  Google Scholar 

  • Kiosses WB, Hood J, Yang S, Gerritsen ME, Cheresh DA, Alderson N, Schwartz MA (2002) A dominant negative p65 PAK peptide inhibits angiogenesis. Circ Res 90:697–702

    Article  CAS  PubMed  Google Scholar 

  • Langel Ü (ed) (2007) Handbook of cell-penetrating peptides. CRC Press, Boca Raton

    Google Scholar 

  • Lukanowska M, Howl J, Jones S (2013) Bioportides: bioactive cell-penetrating peptides that modulate cellular dynamics. Biotechnol J 8:918–930

    Article  CAS  PubMed  Google Scholar 

  • Mae M, Langel Ü (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 6:509–514

    Article  CAS  PubMed  Google Scholar 

  • Mével-Ninio M, Terracol R, Kafatos FC (1991) The ovo gene of Drosophila encodes a zinc finger protein required for female germ line development. EMBO J 10:2259–2266

    Article  PubMed  PubMed Central  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047

    CAS  PubMed  Google Scholar 

  • Schiller PW (2010) Bi- or multifunctional peptide drugs. Life Sci 86:598–603

    Article  CAS  PubMed  Google Scholar 

  • Soomets U, Lindgren M, Gallet X, Hälbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel U (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467:165–176

    Article  CAS  PubMed  Google Scholar 

  • Subirs-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403

    Article  CAS  Google Scholar 

  • Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  Google Scholar 

  • Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice and progress. J Med Chem 57:6275–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CR, Craik DJ (2016) Cyclic peptide oral bioavailability: lessons from the past. Pept Sci 106:901–909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Chris Mason and CEM towards the development and maintenance of a microwave-enhanced peptide synthesis facility. Shaimaa Osman was in receipt of Newton-Mosharafa Fellowship from 2015 to 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Howl.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research Involving with Human and Animal Participants

This article does not present and studies performed with human participants or animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, S., Osman, S. & Howl, J. A High-Throughput Synthetic Platform Enables the Discovery of Proteomimetic Cell Penetrating Peptides and Bioportides. Int J Pept Res Ther 25, 1–8 (2019). https://doi.org/10.1007/s10989-018-9681-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9681-1

Keywords

Navigation