Skip to main content

Advertisement

Log in

Rotavirus VP4 and VP7-Derived Synthetic Peptides as Potential Substrates of Protein Disulfide Isomerase Lead to Inhibition of Rotavirus Infection

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Rotavirus infection of MA104 cells has been shown to be inhibited by cell membrane-impermeant thiol/disulfide exchange inhibitors and anti-PDI antibodies. To characterise the amino acid sequences of rotavirus structural proteins potentially mediating cell surface PDI–substrate interactions, rotavirus-derived peptides from VP4 and VP7 (RRV) and VP7 (Wa), and their modified versions containing serine instead of cysteine were synthesized. Cysteine-containing VP7 peptides corresponding to residues 189–210 or 243–263 caused an infectivity inhibitory effect of about 64 and 85 %, respectively, when added to cells. Changing cysteine to serine significantly decreased the inhibitory effect. A cysteine-containing peptide corresponding to VP4 residues 200–219 and its scrambled version reduced infectivity by 92 and 80 %, respectively. A cysteine to serine change in the original VP4 200–219 peptide did not affect its inhibitory effect. Non-rotavirus related sequences containing cysteine residues efficiently inhibited rotavirus infectivity. Antibodies against VP7 residues 189–210 or 243–263 significantly inhibited rotavirus infectivity only after virus attachment to cells had occurred, whereas those against VP4 200–219 peptide inhibited infectivity irrespective of whether virus or cell-attached virus was antibody-treated. A direct PDI–peptide interaction was shown by ELISA for cysteine-containing VP7 and VP4 peptides. Virus–cell attachment was unaffected by the peptides inhibiting virus infectivity. The results showed that even though cysteine residues in the peptides tested are important in both virus infectivity inhibition and in vitro PDI–peptide interaction, the accompanying amino acid sequence also plays some role. As a whole, our findings further support our hypothesis that cell surface PDI from MA104 cells might be contributing to rotavirus entry at a post-attachment step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell BA, Brown DT (1993) Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. J Virol 67:5496–5501

    PubMed  CAS  Google Scholar 

  • Abou-Jaoudé G, Sureau C (2007) Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol 81:13057–13066

    Article  PubMed  Google Scholar 

  • Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324:1444–1447

    Article  PubMed  CAS  Google Scholar 

  • Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF (2012) Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology 55:451–464

    Article  PubMed  CAS  Google Scholar 

  • Carpino LA, Han GY (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  • Coulson BS, Londrigan SL, Lee DJ (1997) Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci USA 94:5389–5394

    Article  PubMed  CAS  Google Scholar 

  • Dhama K, Chauhan RS, Mahendran M, Malik SVS (2009) Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 33:1–23

    Article  PubMed  CAS  Google Scholar 

  • Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897

    Article  PubMed  CAS  Google Scholar 

  • Dormitzer PR, Nason EB, Prasad BVV, Harrison SC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Esposito DH, Holman RC, Haberling DL, Tate JE, Podewils LJ, Glass RI, Parashar U (2011) Baseline estimates of diarrhea-associated mortality among United States children before rotavirus vaccine introduction. Pediatr Infect Dis J 30:942–947

    Article  PubMed  Google Scholar 

  • Essex DW (2009) Redox control of platelet function. Antioxid Redox Signal 11:1191–1225

    Article  PubMed  CAS  Google Scholar 

  • Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1917–1974

    Google Scholar 

  • Ferrari D, Soling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339:1–10

    Article  PubMed  CAS  Google Scholar 

  • Gowthaman U, Jayakanthan M, Sundar D (2008) Molecular docking studies of dithionitrobenzoic acid and its related compounds to protein disulfide isomerase: computational screening of inhibitors to HIV-1 entry. BMC Bioinformatics 12:S14. doi:10.1186/1471-2105-9-S12-S14

    Article  Google Scholar 

  • Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER et al (2003) Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αXβ2 and αVβ3 by using VP7 during cell entry. J Virol 77:9969–9978

    Article  PubMed  CAS  Google Scholar 

  • Graham KL, Fleming FE, Halasz P, Hewish MJ, Nagesha H, Holmes IH et al (2005) Rotaviruses interact with α4β7 and α4β1 integrins by binding the same integrin domains as natural ligands. J Gen Virol 86:3397–3408

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Méndez E, Zarate S, Isa P, Lopez S, Arias CF (2000) Integrin αvβ3 mediates rotavirus cell entry. Proc Natl Acad Sci USA 97:14644–14649

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R et al (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  PubMed  CAS  Google Scholar 

  • Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G et al (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5:91–93

    Article  PubMed  CAS  Google Scholar 

  • Houghten R (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82:5131–5135

    Article  PubMed  CAS  Google Scholar 

  • Isa P, Lopez S, Segovia L, Arias CF (1997) Functional and structural analysis of the sialic acid-binding domain of rotavirus. J Virol 71:6749–6756

    PubMed  CAS  Google Scholar 

  • Jain S, McGinnes LW, Morrison TG (2009) Role of thiol/disulfide exchange in newcastle disease virus entry. J Virol 83:241–249

    Article  PubMed  CAS  Google Scholar 

  • Jolly CL, Huang JA, Holmes IH (2001) Selection of rotavirus VP4 cell receptor binding domains for MA104 cells using a phage display library. J Virol Methods 98:41–51

    Article  PubMed  CAS  Google Scholar 

  • Jordan PA, Gibbins JM (2006) Extracellular disulfide exchange and the regulation of cell function. Antioxid Redox Signal 8:312–324

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935

    Article  PubMed  CAS  Google Scholar 

  • Lahav JA (2005) A new regulatory disulfide isomerase on the platelet surface. Blood 105:1378–1379

    Article  CAS  Google Scholar 

  • Lahav J, Wijnen EM, Hess O, Hamaia SW, Griffiths D, Markis M, Knight CG, Essex DW, Farndale RW (2003) Enzymatically catalysed disulfide exchange is required for platelet adhesion to collagen via integrin α2β1. Blood 102:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Lopez S, Arias CF (2006) Early steps in rotavirus cell entry. Curr Top Microbiol Immunol 309:39–66

    Article  PubMed  CAS  Google Scholar 

  • Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211–235

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Petitpas I, Navaza J, Lepault J, Kohli E, Pothier P et al (2001) Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. EMBO J 20:1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Mendez E, Arias CF, Lopez S (1993) Binding to sialic acid is not an essential step for the entry of animal rotavirus to epithelial cells in culture. J Virol 67:5253–5259

    PubMed  CAS  Google Scholar 

  • Morjana NA, Gilbert HF (1991) Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry 30:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Narvaez E, Berendsen J, Guzman F, Gallardo J, Mercado L (2010) An immunological method for quantifying antibacterial activity in Salmo salar (Linnaeus, 1758) skin mucus. Fish Shellfish Immunol 28:235–239

    Article  PubMed  CAS  Google Scholar 

  • Parashar U, Bresee J, Glass R (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12:304–306

    Article  PubMed  Google Scholar 

  • Patton JT, Hua J, Mansell EA (1993) Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. J Virol 67:4848–4855

    PubMed  CAS  Google Scholar 

  • Perez-Vargas J, Romero P, Lopez S, Arias CF (2006) Peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 80:3322–3331

    Article  PubMed  CAS  Google Scholar 

  • Quan H, Fan G, Wang CC (1995) Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. J Biol Chem 270:17078–17080

    Article  PubMed  CAS  Google Scholar 

  • Ryser HJ, Mandel R, Gallina A, Rivera A (1999) Plasma membrane protein disulfide isomerase: its role in the translocation of diphtheria toxin and HIV virus across endosomal and cell membranes. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer Academic Publishers, Norwell, pp 279–307

    Google Scholar 

  • Smith JG, Cunningham JM (2007) Receptor-induced thiolate couples Env activation to retrovirus fusion and infection. PLoS Pathog 3:e198

    Article  PubMed  Google Scholar 

  • Svensson L, Dormitzer PR, von Bonsdorff CH, Maunula L, Greenberg HB (1994) Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly. J Virol 68:5204–5215

    PubMed  CAS  Google Scholar 

  • Swiatkowska M, Szymanski J, Padula G, Cierniewski CS (2008) Interaction and functional association of protein disulfide isomerase with αVβ3 integrin on endothelial cells. FEBS J 275:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Turano C, Coppari S, Altieri F, Ferraro A (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193:154–163

    Article  PubMed  CAS  Google Scholar 

  • Yoder JD, Trask SD, Vo TP, Binka M, Feng N, Harrison SC et al (2009) VP5* rearranges when rotavirus uncoats. J Virol 83:11372–11377

    Article  PubMed  CAS  Google Scholar 

  • Zarate S, Cuadras MA, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M et al (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260

    Article  PubMed  CAS  Google Scholar 

  • Zarate S, Espinosa R, Romero P, Méndez E, Arias CF, López S (2000) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol 74:593–599

    Article  PubMed  CAS  Google Scholar 

  • Zarate S, Romero P, Espinosa R, Arias CF, Lopez S (2004) VP7 mediates the interaction of rotaviruses with integrin αvβ3 through a novel integrin-binding site. J Virol 78:10839–10847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Oviedo for assistance with antibody preparation. This study was funded by the Research Division of Bogota Branch (DIB), National University of Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Guerrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderón, M.N., Guzmán, F., Acosta, O. et al. Rotavirus VP4 and VP7-Derived Synthetic Peptides as Potential Substrates of Protein Disulfide Isomerase Lead to Inhibition of Rotavirus Infection. Int J Pept Res Ther 18, 373–382 (2012). https://doi.org/10.1007/s10989-012-9314-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9314-z

Keywords

Navigation