Skip to main content
Log in

Analgesic and Antipyretic Activities of a Novel Tetrapeptide in Rats

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The efficacy of a novel tetrapeptide sequence, FLPS (Phe-Leu-Pro-Ser), to alleviate severe pain associated with surgical incision is demonstrated in the Brennan model, a model used for developing new drugs for postoperative pain in humans. The tetrapeptide (100 mg/kg dose) administered by subdermal injection completely alleviated post-incisional pain in rats using the hindpaw withdrawal as an endpoint response. When the tetrapeptide (0.15 mg/paw) was topically applied to the vicinity of the surgical wound, it also alleviated pain. Statistically significant increases in pain threshold (assessed by von Frey filaments pressed against the surgical wound, 15–20 min after dosing) were observed on the day of surgery and on the third day post-surgery. Up to a 0.5°C decrease in body temperature under basal conditions and yeast-provoked pyrexia was observed at doses that alleviate pain. The tetrapeptide does not exhibit any significant anti-edema activity in carrageenan-induced hindpaw edema, and does not affect human recombinant cyclooxygenase-2 activity, indicating that the analgesic property of the tetrapeptide is unlikely to be mediated through inflammatory pathways. The tetrapeptide at 10 μM, a dose that is sufficient to increase the pain threshold in rats, does not compete with naloxone for the opioid receptors in membrane preparations from rat brain, indicating that it does not mediate its effect through the opioid receptors. It also does not bind to the vanilloid receptor, indicating that peripheral vanilloid receptors are not involved in pain relief by the tetrapeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

COX-2:

Cyclooxygenase-2

CNS:

Central nervous system

DMSO:

Dimethyl sulfoxide

IC50 :

Concentration that provides 50% inhibition

MALDI/TOF/MS:

Matrix assisted laser desorption ionization/time of flight/mass spectroscopy

NSAIDs:

Non-steroidal anti-inflammatory drugs

TFA:

Trifluoroacetic acid

References

  • Brennan TJ (1999) Postoperative models of nociception. ILAR J 40:129–136

    PubMed  Google Scholar 

  • Brennan TJ, Vandermeulen E, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64:493–501

    Article  PubMed  CAS  Google Scholar 

  • Brower CV (2000) New paths to pain relief. Nat Biotechnol 18:387–391

    Article  PubMed  CAS  Google Scholar 

  • Cabot PJ, Carter L, Gaiddon C, Zhang Q, Schafer M, Loeffler JP, Stein C (1997) Immune cell-derived b-endorphin: production, release and control of inflammatory pain in rats. J Clin Invest 100:142–148

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat hind paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay D, Arunachalam G, Ghosh L, Rajendran K, Mandal AB, Bhattacharya SK (2005) Antipyretic activity of Alstonia macrophylla Wall ex. A. DC: an ethnomedicine of Andaman Islands. J Pharm Pharm Sci 8:558–564

    PubMed  Google Scholar 

  • Childers SR, Creese I, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmcol 55:11–18

    Article  CAS  Google Scholar 

  • Civelli O, Birnberg N, Herbert E (1982) Detection and quantitation of pro-opiomelanocortin mRNA in pituitary and brain tissues from different species. J Biol Chem 257:6783–6787

    PubMed  CAS  Google Scholar 

  • Conti B, Sanchez-Alavez M, Winsky-Sommerer R, Morale MC, Lucero J, Brownell S, Fabre V, Huitron-Resendiz S, Henriksen S, Zorrilla EP (2006) Luis de Lecea Ld, Bartfai1 T. Transgenic mice with a reduced core body temperature have an increased life span. Science 314:825–828

    Article  PubMed  CAS  Google Scholar 

  • Dib B (1983) Dissociation between peripheral and central heat loss mechanisms induced by neonatal capsaicin. Behav Neurosci 97:822–825

    Article  PubMed  CAS  Google Scholar 

  • Douglass JO, McMurray CT, Garrett J, Adelman JP, Calavetta L (1989) Molecular characterization of the rat prodynorphin gene. Mol Endocrinol 3:2070–2078

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist HD, Allard BL, Simone DA (1996) Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 67:179–188

    Article  PubMed  CAS  Google Scholar 

  • Hansra EL, Fornasier MVL, Bogoch ER (2000) Carrageenan-induced arthritis in the rat. Inflammation 24:141–155

    Article  PubMed  CAS  Google Scholar 

  • Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306:611–614

    Article  PubMed  CAS  Google Scholar 

  • Hui K, Beiying Liu B, Qin F (2003) Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys J 84:2957–2968

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Mantyh PW (2001) The molecular dynamics of pain control. Nat Rev Neurosci 2:83–91

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  PubMed  CAS  Google Scholar 

  • Lindberg I, Shaw E (1992) Posttranslational processing of proenkephalin in SK-N-MC cells: evidence for phosphorylation. J Neurochem 58:448–453

    Article  PubMed  CAS  Google Scholar 

  • Litt M, Buroker NE, Kondoleon S, Douglass J, Liston D, Sheehy R, Magenis RE (1988) Chromosomal localization of the human proenkephalin and prodynorphin genes. Am J Hum Genet 42:327–334

    PubMed  CAS  Google Scholar 

  • McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA, Zhang Q, Sitte N, Ji RR, Stein C (2001) b-Endorphin containing memory-cells and m-opioid receptors undergo transport to peripheral inflamed tissue. J Neuroimmunol 115:71–78

    Article  PubMed  CAS  Google Scholar 

  • Neilan CL, Nguyen TMD, Schiller PW, Pasternak GW (2001) Pharmacological characterization of the dermorphin analog [Dmt1]DALDA, a highly potent and selective μ-opioid peptide. Eur J Pharmacol 419:15–23

    Article  PubMed  CAS  Google Scholar 

  • Pasternak GW, Wilson HA, Synder SH (1975) Differential effects of protein modifying effects on receptor binding of opiate agonists and antagonists. Mol Pharmacol 11:340–351

    PubMed  CAS  Google Scholar 

  • Riendeau D, Charieson S, Cromllsh W, Mancini JA, Wong E, Guay J (1997) Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective Cox-2 inhibitors, using sensitive microsmal and platelet assays. Can J Physiol Pharmacol 75:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Schäfer M (1999) Peripheral opioid analgesia: from experimental to clinical studies. Curr Opin Anaesth 12:603–607

    Article  Google Scholar 

  • Schiller PW (2005) Opioid peptide-derived Aanalgesics. AAPS J 7:E560–E565

    Article  PubMed  CAS  Google Scholar 

  • Shook JE, Pelton JT, Hruby VJ, Burks TF (1997) Peptide opioid antagonist separates peripheral and central opioid antitransit effects. J Pharmacol Exp Therap 243:492–500

    Google Scholar 

  • Stein C (1995) The control of pain in peripheral tissue by opioids. N Engl J Med 332:1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Hassan AHS, Przewlocki R (1990) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 87:5935–5939

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Hassan AHS, Lehrberger K (1993) Local analgesic effect of endogenous opioid peptides. Lancet 342:321–324

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Schäfer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Szallasi A, Goso C, Blumberg PM, Manzini S (1993) Competitive inhibition by capsazepine of [3H]resiniferatoxin binding to central (spinal cord and dorsal root ganglia) and peripheral (urinary bladder and airways) vanilloid (capsaicin) receptors in the rat. J Pharmacol Exp Ther 267:728–733

    PubMed  CAS  Google Scholar 

  • Treede RD (1995) Peripheral acute pain mechanisms. Ann Med 27:213–216

    Article  PubMed  CAS  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  • Weber SJ, Greene DL, Sharma SD, Yamamura HI, Kramer TH, Burks TF, Hruby VJ, Hersh LB, Davis TP (1991) Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration. J Pharmacol Exp Ther 259:1109–1117

    PubMed  CAS  Google Scholar 

  • Wenk HN, Honda CN (1999) Immunohistochemical localization of delta opioid receptors in peripheral tissues. J Comp Neurol 408:567–579

    Article  PubMed  CAS  Google Scholar 

  • Whiteside GT, Harrison J, Boulet J, Mark L, Pearson M, Gottshall S, Walker K (2004) Pharmacological characterisation of a rat model of incisional pain. Br J Pharmacol 141:85–91

    Article  PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced edema in the hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Zahn PK, Gysbers D, Brennan TJ (1997) Effect of systemic and intrathecal morphine in a rat model of postoperative pain. Anesthesiology 86:1066–1077

    Article  PubMed  CAS  Google Scholar 

  • Zahn PK, Pogatzki EM, Brennan TJ (2002) Mechanisms for pain caused by incisions. Reg Anesth Pain Med 27:514–516

    PubMed  Google Scholar 

Download references

Acknowledgement

We thank MDS Pharma Services for conducting the assays for COX-2, naloxone, and the vanilloid receptor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Skubatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubatz, H., Brot, M.D., Stock, K.M. et al. Analgesic and Antipyretic Activities of a Novel Tetrapeptide in Rats. Int J Pept Res Ther 15, 293–301 (2009). https://doi.org/10.1007/s10989-009-9191-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-009-9191-2

Keywords

Navigation