Skip to main content

Advertisement

Log in

ChBac3.4: A Novel Proline-Rich Antimicrobial Peptide from Goat Leukocytes

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2009

Abstract

We isolated a new proline-rich peptide, ChBac3.4, from leukocytes of the goat (Capra hirca) and determined its amino acid sequence by Edman degradation and mass spectrometry. ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL–NH2) had over 50% sequence identity to the Bac5 peptides found in the leukocytes of goats, sheep and cattle. ChBac3.4 exhibited broadspectrum antimicrobial activity, especially under low salt conditions. Since E. coli ML35p treated with ChBac3.4 manifested increased outer and inner membrane permeability and a rapid and extensive loss of cytoplasmic potassium, the antimicrobial properties of this peptide may depend, in part, on its ability to damage microbial membranes. Nevertheless, even high concentrations of ChBac3.4 were not significantly hemolytic for human erythrocytes. In vitro, ChBac3.4 was selectively cytotoxic, damaging human K562 erythroleukemia cells and human U937 hystiocytic lymphoma cells, but not other human target cells. ChBac3.4 appears to differ from other proline-rich cathelicidins in virtue of its increased ability to damage microbial membranes. This novel antimicrobial peptide warrants further study, especially with respect to its various effects on microbial and mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AU:

Acid-urea

CEE:

Continuous elution electrophoresis

MHB:

Mueller-Hinton broth

MIC:

Minimal inhibitory concentration

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

TSB:

Tryptic soy broth

References

  • Agerberth B, Lee JY, Bergman T et al (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  PubMed  CAS  Google Scholar 

  • Anderson R, Yu PL (2003) Isolation and characterization of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem Biophys Res Commun 312:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Anderson R, Hancock RE, Yu PL (2004) Antimicrobial activity and bacterial-membrane interaction of ovine-derived cathelicidins. Antimicrob Agents Chemother 48:673–676

    Article  PubMed  CAS  Google Scholar 

  • Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  • Brötz H, Sahl HG (2000) New insights into the mechanism of action of lantibiotics—diverse biological effects by binding to the same molecular target. J Antimicrob Chemother 46:1–6

    Article  PubMed  Google Scholar 

  • Bulet P, Dimarcq JL, Hetru C et al (1993) A novel inducible antibacterial peptide of Drosophila carries an o-glycosylated substitution. J Biol Chem 268:14893–14897

    PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  • Cho JH, Park CB, Yoon YG, Kim CS (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta 1408:67–76

    PubMed  CAS  Google Scholar 

  • Cociancich S, Dupont A, Hegy G et al (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300(Pt 2):567–575

    PubMed  CAS  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  PubMed  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-luorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    PubMed  CAS  Google Scholar 

  • Gallo RL, Ono M, Povsic T et al (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11041

    Article  PubMed  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

    PubMed  CAS  Google Scholar 

  • Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Harwig SS, Chen NP, Park AS, Lehrer RI (1993) Purification of cysteine-rich bioactive peptides from leukocytes by continuous acid-urea-polyacrylamide gel electrophoresis. Anal Biochem 208:382–386

    Article  PubMed  CAS  Google Scholar 

  • Harwig SS, Kokryakov VN, Swiderek KM, Aleshina GM, Zhao C, Lehrer RI (1995) Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett 362:65–69

    Article  PubMed  CAS  Google Scholar 

  • Huttner KM, Lambeth MR, Burkin HR, Burkin DJ, Broad TE (1998) Localization and genomic organization of sheep antimicrobial peptide genes. Gene 206:85–91

    Article  PubMed  CAS  Google Scholar 

  • Kay B, Williamson M, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB 14:231–241

    CAS  Google Scholar 

  • Kokryakov VN, Harwig SSL, Panyutich EA et al (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defense. Curr Opin Immunol 11:23–27

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Barton A, Ganz T (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 108:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137:167–173

    Article  PubMed  CAS  Google Scholar 

  • Li J, Post M, Volk R et al (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6:49–55

    Article  PubMed  CAS  Google Scholar 

  • Mattiuzzo M, Bandiera A, Gennaro R et al (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151–163

    Article  PubMed  CAS  Google Scholar 

  • Merrifield RB, Barany G (1980) Solid-phase peptide synthesis. In: Gross M (ed) The peptide: analysis, synthesis, biology. Academic Press, New York, pp 3–283

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (1993) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, document M7–A3. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  • Orlov DS, Nguyen T, Lehrer RI (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49:325–328

    Article  PubMed  CAS  Google Scholar 

  • Otvos L (2002) The short proline-rich family. Cell Mol Life Sci 59:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Podda E, Benincasa M, Pacor S et al (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740

    PubMed  CAS  Google Scholar 

  • Raj PA, Edgerton M (1995) Functional domain and poly-l-proline II conformation for candidacidal activity of bactenecin 5. FEBS Lett 368:526–530

    Article  PubMed  CAS  Google Scholar 

  • Sahl HG, Bierbaum G (1998) Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol 52:41–79

    Article  PubMed  CAS  Google Scholar 

  • Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532–539

    Article  PubMed  CAS  Google Scholar 

  • Schnolzer M, Alewood P, Jones A, Alewood D, Kent SB (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180–193

    PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Shamova O, Brogden KA, Zhao C, Nguen T, Kokryakov VN, Lehrer RI (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67:4106–4111

    PubMed  CAS  Google Scholar 

  • Shi J, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA 93:6014–6018

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Lehmann J, Hanisch K, Härtig W, Hoffmann R (2006) Neighbored phosphorylation sites as PHF-tau specific markers in Alzheimer’s disease. Biochem Biophys Res Comm 346:819–828

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D, Lehrer RI (1997) Designer assays for antimicrobial peptides: disputing the “One-Size-Fits-All” Theory. In: Shafer WM (ed) Antibacterial peptides protocols. Humana Press, Totowa, NJ, pp 169–186

    Chapter  Google Scholar 

  • Tokunaga Y, Niidome T, Hatakeyama T, Aoyagi H (2001) Antibacterial activity of bactenecin 5 fragments and their interaction with phospholipid membranes. J Pept Sci 7:297–304

    Article  PubMed  CAS  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins—structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  • Treffers C, Chen L, Anderson RC, Yu PL (2005) Isolation and characterisation of antimicrobial peptides from deer neutrophils. Int J Antimicrob Agents 26:165–169

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Nguyen T, Liu L, Shamova O, Brogden K, Lehrer RI (1999) Differential expression of caprine β-defensins in digestive and respiratory tissues. Infect Immun 67:6221–6224

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by INTAS Grant (Ref. No. 03-51-4984), Russian Foundation of Basic Research (No. 07-04-01759; No. 06-04-49416), by the BONFOR programme of the University of Bonn, FVG regional Grant 200502027001 and the European Fond for Regional Structure Development (EFRE, European Union and Free State Saxony). We acknowledge The Center of United Users “Analytical Spectrometry” at St-Petersburg State Polytechnic University for providing the opportunity to use equipment belonging to The Center in the course of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Shamova.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10989-009-9170-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamova, O., Orlov, D., Stegemann, C. et al. ChBac3.4: A Novel Proline-Rich Antimicrobial Peptide from Goat Leukocytes. Int J Pept Res Ther 15, 31–42 (2009). https://doi.org/10.1007/s10989-008-9159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9159-7

Keywords

Navigation