Skip to main content
Log in

Linear Multifractional Stable Motion: Wavelet Estimation of H(·) and α Parameters*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Stoev and Taqqu introduced a linear multifractional stable motion (LMSM), an extension of a linear fractional stable motion (LFSM) such that the Hurst parameter H becomes a function H(t). The stability parameter α determines tail heaviness of marginal distributions of LMSM. Under some conditions, Stoev and Taqqu showed that H(t 0) is its self-similarity exponent at a t 0 ≠ 0; also, recently, Ayache and Hamonier established that H(t 0)−1/α and min tI H(t)−1/α are its local Hölder exponent at t 0 and uniform Hölder exponent on a compact interval I.

We construct, strongly consistent wavelet estimators of min tI H(t), H(t 0), and α when α ∈ (1, 2) and H(·) is smooth with values in \( \left[\underset{\bar{\mkern6mu}}{H},\overline{H}\right]\subset \left(1/\alpha, 1\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Abry, B. Pesquet-Popescu, and M.S. Taqqu, Estimation ondelette des paramètres de stabilité et d’autosimilarité des processus α-stables autosimilaires, in 17ème Colloque sur le traitement du signal et des images, Vannes, France, 13–17 septembre, 1999, GRETSI, Groupe d’Etudes du Traitement du Signal et des Images, 1999, pp. 933–936.

  2. A. Ayache and C. El-Nouty, The small ball behavior of a non stationary increments process: The multifractional Brownian motion, preprint No. 8, CMLA, 2004.

  3. A. Ayache and J. Hamonier, Linear fractional stable motion: A wavelet estimator of the α parameter, Stat. Probab. Lett., 82(8):1569–1575, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ayache and J. Hamonier, Linear multifractional stable motion: Fine path properties, Rev. Mat. Iberoam., 30(4):1301–1354, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Ayache and J. Lévy Véhel, Identification of the pointwise Hölder exponent of generalized multifractional Brownian motion, Stochastic Processes Appl., 111(1):119–156, 2004.

    Article  MATH  Google Scholar 

  6. J.M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional processes, Stochastic Processes Appl., 123(3):1004–1045, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Benassi, S. Cohen, and J. Istas, Identifying the multifractional function of a Gaussian process, Stat. Probab. Lett., 39(4):337–345, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Benassi, S. Jaffard, and D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoam., 13(1):19–90, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.F. Coeurjolly, Identification of multifractional Brownian motion, Bernoulli, 11(6):987–1008, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.F. Coeurjolly, Erratum: Identification of multifractional Brownian motion, Bernoulli, 12(2):381–382, 2006.

    Article  MathSciNet  Google Scholar 

  11. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math., Vol. 61, SIAM, Philadelphia, 1992.

  12. L. Delbeke, Wavelet Based Estimators for the Hurst Parameter of a Self-Similar Process, PhD thesis, KU Leuven, Belgium, 1998.

  13. L. Delbeke and P. Abry, Stochastic integral representation and properties of the wavelet coefficients of linear fractional stable motion, Stochastic Processes Appl., 86(2):177–182, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Embrechts and M. Maejima, Self-Similar Processes, Princeton Series in Applied Mathematics, Princeton Univ. Press, Princeton, NJ, 2002.

  15. K.J. Falconer, Tangent fields and the local structure of random fields, J. Theor. Probab., 15(3):731–750, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. K.J. Falconer, The local structure of random processes, J. Lond. Math. Soc., 67(2):657–672, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Lacaux, Real harmonizable multifractional Lévy motions, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. B, 40(3):259–277, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Le Guével, An estimation of the stability and the localisability functions of multistable processes, Electron. J. Stat., 7:1129–1166, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Lopes, A. Ayache, N. Makni, P. Puech, A. Villers, S. Mordon, and N. Betrouni, Prostate cancer characterization on MR images using fractal features, Medical Physics, 38(1):83–95, 2011.

    Article  Google Scholar 

  20. R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, Rapport de recherche de l’INRIA, 2645:239–265, 1995.

    Google Scholar 

  21. Q. Peng, Inférence statistique pour des processus multifractionnaires cachés dans un cadre de modèles à volatilité stochastique, PhD thesis, Université Lille 1, 2011.

  22. V. Pipiras, M.S. Taqqu, and P. Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli, 13(4):1091–1123, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

    MATH  Google Scholar 

  24. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Variables. Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York, 1994.

    Google Scholar 

  25. S. Stoev, V. Pipiras, and M.S. Taqqu, Estimation of the self-similarity parameter in linear fractional stable motion, Signal Process., 82(12):1873–1901, 2002.

    Article  MATH  Google Scholar 

  26. S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion, Adv. Appl. Probab., 36(4):1085–1115, 2004.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Ayache.

Additional information

*This work has been partially supported by ANR-11-BS01-0011 (AMATIS), GDR 3475 (Analyse Multifractale), and ANR-11-LABX-0007-01 (CEMPI).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayache, A., Hamonier, J. Linear Multifractional Stable Motion: Wavelet Estimation of H(·) and α Parameters* . Lith Math J 55, 159–192 (2015). https://doi.org/10.1007/s10986-015-9272-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-015-9272-1

MSC

Keywords

Navigation