Skip to main content
Log in

A novel approach to construct the adjoint problem for a first-order functional integro-differential equation with general nonlocal condition

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this work, with the aim of determining Green’s solution or generalized Green’s solution, we propose a novel constructive approach by which a linear or specific nonlinear problem involving general linear nonlocal condition for a first-order functional ordinary integro-differential equation with general nonsmooth coefficients satisfying some general properties such as p-integrability and boundedness is reduced to an integral equation. A system of two integro-algebraic equations, called “the adjoint system,” is constructed for this problem. Green’s functional for the problem with trivial kernel and generalized Green’s functional for the problem with nontrivial kernel are the unique solutions to the specific cases of this adjoint system. Green’s functional and generalized Green’s functional have two components. Their first components correspond to Green’s function and generalized Green’s function for the problem, respectively. Some illustrative applications are provided with known and unknown results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.S. Akhiev, Representations of the solutions of some linear operator equations, Sov. Math., Dokl., 21(2):555–558, 1980.

    MATH  Google Scholar 

  2. S.S. Akhiev, Fundamental solutions of functional differential equations and their representations, Sov. Math., Dokl., 29(2):180–184, 1984.

    MATH  MathSciNet  Google Scholar 

  3. S.S. Akhiev, Green and generalized Green’s functionals of linear local and nonlocal problems for ordinary integrodifferential equations, Acta Appl. Math., 95:73–93, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  4. S.S. Akhiev and K. Oruçoğlu, Fundamental solutions of some linear operator equations and applications, Acta Appl. Math., 71:1–30, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Ali, H. Brunner, and T. Tang, A spectral method for pantograph-type delay differential equations and its convergence analysis, J. Comput. Math., 27(2–3):254–265, 2009.

    MATH  MathSciNet  Google Scholar 

  6. N.S. Bakhvalov, N.P. Jidkov, and G.M. Kobel’kov, Numerical Methods, Nauka, Moscow, 1987 (in Russian).

    MATH  Google Scholar 

  7. C. Bota and B. Caruntu, ε-approximate polynomial solutions for the multi-pantograph equation with variable coefficients, Appl. Math. Comput., 219:1785–1792, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.L. Brown and A. Page, Elements of Functional Analysis, Van Nostrand, New York, 1970.

    MATH  Google Scholar 

  9. T.A. Burton and I.K. Purnaras, L p-solutions of singular integro-differential equations, J. Math. Anal. Appl., 386:830–841, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Cabada, J.B. Ferreiro, and J.J. Nieto, Green’s function and comparison principles for first order periodic differential equations with piecewise constant arguments, J. Math. Anal. Appl., 291:690–697, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Cabada and F.A.F. Tojo, Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 78:32–46, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.A. Dominguez-Perez and R. Rodriguez-Lopez, Multipoint boundary value problems of Neumann type for functional differential equations, Nonlinear Anal., Real World Appl., 13:1662–1675, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  13. D.J. Evans and K.R. Raslan, The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math., 82(1):49–54, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  15. M. Kadakal, F.S. Muhtarov, and O.S. Mukhtarov, Green function of one discontinuous boundary value problem with transmission conditions, Bull. Pure Appl. Sci. E, Math. Stat., 21(2):357–369, 2002.

    MATH  MathSciNet  Google Scholar 

  16. L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, New York, 1982.

    MATH  Google Scholar 

  17. S.G. Krein, Linear Equations in Banach Space, Nauka, Moscow, 1971 (in Russian).

    Google Scholar 

  18. C. Lanczos, Linear Differential Operators, Van Nostrand, London, 1964.

    Google Scholar 

  19. B. Liu, Existence and uniqueness of solutions to first-order multipoint boundary value problems, Appl. Math. Lett., 17:1307–1316, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.Z. Liu and D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155:853–871, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. O.S. Mukhtarov, M. Kadakal, and F.S. Muhtarov, On discontinuous Sturm–Liouville problems with transmission conditions, J. Math. Kyoto Univ., 44(4):779–798, 2004.

    MATH  MathSciNet  Google Scholar 

  22. M.A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969 (in Russian).

    Google Scholar 

  23. J.J. Nieto and R. Rodriguez-Lopez, Green’s function for first-order multipoint boundary value problems and applications to the existence of solutions with constant sign, J. Math. Anal. Appl., 388:952–963, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Orucoğlu and K. Özen, Green’s functional for second-order linear differential equation with nonlocal conditions, Electron. J. Differ. Equ., 2012, Article No. 121, 12 pp., 2012.

  25. K. Özen and K. Orucoğlu, A representative solution to m-order linear ordinary differential equation with nonlocal conditions by Green’s functional concept, Math. Model. Anal., 17(4):571–588, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Özen and K. Orucoğlu, A transformation technique for boundary value problem with linear nonlocal condition by Green’s functional concept, in D. Biolek and N.A. Baykara (Eds.), Advances in Systems Theory, Signal Processing and Computational Science. Proceedings of the 12th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC’12), Istanbul, Turkey, August 21–23, 2012, WSEAS Press, 2012, pp. 157–162.

  27. K. Özen and K. Orucoğlu, Green’s functional concept for a nonlocal problem, Hacet. J. Math. Stat., 42(4):437–446, 2013.

    MATH  MathSciNet  Google Scholar 

  28. I.K. Purnaras, On the existence of nonnegative solutions to an integral equation with applications to boundary value problems, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 71:3914–3933, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Roman, Linear differential equation with additional conditions and formulae for Green’s function, Math. Model. Anal., 16(3):401–417, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Roman and A. Štikonas, Green’s functions for stationary problems with nonlocal boundary conditions, Lith. Math. J., 49(2):190–202, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  31. G.E. Shilov, Generalized Functions and Partial Differential Equations, Gordon and Breach, New York, 1968.

    MATH  Google Scholar 

  32. I. Stakgold, Green’s Functions and Boundary Value Problems, Wiley, New York, 1998.

    MATH  Google Scholar 

  33. A. Štikonas, A survey on stationary problems, Green’s functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control, 19(3):301–334, 2014.

    MathSciNet  Google Scholar 

  34. O. Uğur and M.U. Akhmet, Boundary value problems for higher order linear impulsive differential equations, J. Math. Anal. Appl., 319:139–156, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  35. V.S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, New York, 1971.

    Google Scholar 

  36. J. Wiener, Generalized Solutions of Functional-Differential Equations, World Scientific, River Edge, NJ, 1993.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Özen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, K., Oruçoğlu, K. A novel approach to construct the adjoint problem for a first-order functional integro-differential equation with general nonlocal condition. Lith Math J 54, 482–502 (2014). https://doi.org/10.1007/s10986-014-9259-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-014-9259-3

Keywords

Navigation