Skip to main content

Advertisement

Log in

Marker-dependent observation and carry-forward of internal covariates in Cox regression

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Studies of chronic disease often involve modeling the relationship between marker processes and disease onset or progression. The Cox regression model is perhaps the most common and convenient approach to analysis in this setting. In most cohort studies, however, biospecimens and biomarker values are only measured intermittently (e.g. at clinic visits) so Cox models often treat biomarker values as fixed at their most recently observed values, until they are updated at the next visit. We consider the implications of this convention on the limiting values of regression coefficient estimators when the marker values themselves impact the intensity for clinic visits. A joint multistate model is described for the marker-failure-visit process which can be fitted to mitigate this bias and an expectation-maximization algorithm is developed. An application to data from a registry of patients with psoriatic arthritis is given for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aalen O, Borgan Ø, Fekjær H (2001) Covariate adjustment of event histories estimated from Markov chains: the additive approach. Biometrics 57(4):993–1001

    Article  MathSciNet  Google Scholar 

  • Altman D (1991) Categorising continuous variables. Br J Cancer 64(5):975

    Article  Google Scholar 

  • Andersen P, Gill R (1982) Cox’s regression model for counting processes: a large sample study. The Annals of Statistics 10(4):1100–1120

    Article  MathSciNet  Google Scholar 

  • Andersen P, Liestol K (2003) Attenuation caused by infrequently updated covariates in survival analysis. Biostatistics 4(4):633–649

    Article  Google Scholar 

  • Andy S, Keeffe E (2003) Elevated AST or ALT to nonalcoholic fatty liver disease: accurate predictor of disease prevalence? The American Journal of Gastroenterology 98(5):955–956

    Article  Google Scholar 

  • Butler A, English E, Kilpatrick E, Östlundh L, Chemaitelly H, Abu-Raddad L, Alberti K, Atkin S, John W (2021) Diagnosing type 2 diabetes using Hemoglobin A1c: a systematic review and meta-analysis of the diagnostic cutpoint based on microvascular complications. Acta Diabetologica 58(3):279–300

    Article  Google Scholar 

  • Cook R, Lawless J (2018) Multistate Models for the Analysis of Life History Data. Chapman and Hall/CRC, Boca Raton, FL

    Book  Google Scholar 

  • Cook R, Lawless J (2021) Independence conditions and the analysis of life history studies with intermittent observation. Biostatistics 22(3):455–481

    Article  MathSciNet  Google Scholar 

  • Datta S, Satten G (2001) Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models. Statistics & Probability Letters 55(4):403–411

    Article  MathSciNet  Google Scholar 

  • de Bruijne M, Cessie S, Kluin-Nelemans H, Houwelingen H (2001) On the use of Cox regression in the presence of an irregularly observed time-dependent covariate. Stat Med 20(24):3817–3829

    Article  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc: Series B (Methodological) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Eeg-Olofsson K, Cederholm J, Nilsson P, Zethelius B, Svensson AM, Gudbjörnsdottir S, Eliasson B (2010) New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J Intern Med 268(5):471–482

    Article  Google Scholar 

  • Gelman A, Park D (2009) Splitting a predictor at the upper quarter or third and the lower quarter or third. The American Statistician 63(1):1–8

    Article  MathSciNet  Google Scholar 

  • Gladman D, Chandran V (2011) Observational cohort studies: lessons learnt from the University of Toronto Psoriatic Arthritis Program. Rheumatology 50(1):25–31

    Article  Google Scholar 

  • Jewell N, Kalbfleisch J (1996) Marker processes in survival analysis. Lifetime Data Anal 2(1):15–29

    Article  Google Scholar 

  • Jiang S, Cook R, Zeng L (2020) Mitigating bias from intermittent measurement of time-dependent covariates in failure time analysis. Stat Med 39(13):1833–1845

    Article  MathSciNet  Google Scholar 

  • Lin D, Wei LJ (1989) The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association 84(408):1074–1078

    Article  MathSciNet  Google Scholar 

  • Louis T (1982) Finding the observed information matrix when using the EM algorithm. J Royal Stat Soc: Series B (Methodological) 44(2):226–233

    MathSciNet  MATH  Google Scholar 

  • Martinussen T (1999) Cox regression with incomplete covariate measurements using the EM - algorithm. Scandinavian J Stat 26(4):479–491

    Article  MathSciNet  Google Scholar 

  • McQuarrie E, Traynor J, Taylor A, Freel E, Fox J, Jardine A, Mark P (2014) Association between urinary sodium, creatinine, albumin, and long-term survival in chronic kidney disease. Hypertension 64(1):111–117

    Article  Google Scholar 

  • Papageorgiou G, Mauff K, Tomer A, Rizopoulos D (2019) An overview of joint modeling of time-to-event and longitudinal outcomes. Annual review of Statistics and its Application 6:223–240

    Article  MathSciNet  Google Scholar 

  • R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  • Raboud J, Reid N, Coates R, Farewell V (1993) Estimating risks of progressing to AIDS when covariates are measured with error. J Royal Stat Soc: Series A 156(3):393–406

    Article  Google Scholar 

  • Rahman P, Gladman D, Cook R, Zhou Y, Young G, Salonen D (1998) Radiological assessment in psoriatic arthritis. Br J Rheumatol 37(7):760–765

    Article  Google Scholar 

  • Royston P, Altman D, Sauerbrei W (2006) Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 25(1):127–141

    Article  MathSciNet  Google Scholar 

  • Struthers C, Kalbfleisch J (1986) Misspecified proportional hazard models. Biometrika 73(2):363–369

    Article  MathSciNet  Google Scholar 

  • Tsiatis A, Davidian M (2001) A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88(2):447–458

    Article  MathSciNet  Google Scholar 

  • Tsiatis A, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 14(3):809–834

    MathSciNet  MATH  Google Scholar 

  • Wong G, Chan H, Tse YK, Yip T, Lam K, Lui G, Wong V (2018) Normal on-treatment ALT during antiviral treatment is associated with a lower risk of hepatic events in patients with chronic hepatitis B. J Hepatol 69(4):793–802

    Article  Google Scholar 

  • Wulfsohn M, Tsiatis A (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53(1):330–339

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

It is our great pleasure to contribute to the special issue of Lifetime Data Analysis in honour of David Oakes, whose many important contributions to the field of life history analysis are marked by their relevance, creativity, rigour, and clarity. We thank the Guest Editors Jong H. Jeong and Amita Manatunga for the opportunity to take part in this special and much-deserved recognition. This work was funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-04207 for R.J.C. and RGPIN-2017-04055 for J.F.L.). R.J.C. is a Mathematics Faculty Research Chair at the University of Waterloo. The authors thank Drs. Dafna Gladman and Vinod Chandra of the Centre for Prognosis in Rheumatic Diseases for stimulating discussion and permission to use the data in the application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Cook.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Computation of \(r^{(k)}(s)= E( {\bar{Y}}_i(s) d N_i(s))\)

Here we next describe the computation of the expectation \(r^{(0)}(s)= E\{ {\bar{Y}}_i(s) d N_i(s)\}\) based on this joint model. We use E to denote expectations taken with respect to the joint model depicted in Fig. 3 and P to denote corresponding probabilities based on the joint process. Note that

$$\begin{aligned} r^{(0)}(s) = d \varLambda _2(s) {E}_{Z(0), X_2} \{ E_{{\bar{Y}}(s), X_1(s)} \left( {\bar{Y}}(s) \exp (\beta _1 X_1(s) +\beta _2'X_2) |Z(0), X_2\right) \} \end{aligned}$$

which can be computed as

$$\begin{aligned} d \varLambda _2(s) {E}_{{Z}(0),X_2} \{ \textstyle \sum _{k=0}^1 \exp (\beta _1 k + \beta _2' X_2) {P}( {{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^z_k |\,Z(0), X_2) \}\,. \end{aligned}$$
(A.1)

If \(k=1\) we partition \(r^{(1)}(s) = E \{ {\bar{Y}}_i(s) X_i^{\circ }(s) d N_i(s) \}\) conformably with \(X^\circ (t) = (X^\circ _1(t), X_2')'\) and write \(r^{(1)}(s) = (r_1^{(1)}(s), [r^{(1)}_2(s)]')'\), the leading term has the form

$$\begin{aligned} {E}_{X_2} \left\{ E_{X^{\circ }(s), {\bar{Y}}(s)} \left[ E\{ {\bar{Y}}(s) X_1^{\circ }(s) d \varLambda _2(s | X(s)) | X_1^{\circ }(s)= 1, X_2, {\bar{Y}}(s) = 1 \} | X_2 \right] \right\} \,. \end{aligned}$$

This can be written as

$$\begin{aligned} d \varLambda _2(s) \, {E}_{{Z}(0), X_2} \{ \textstyle \sum _{k=0}^1 \exp ( \beta _1 k + \beta '_2 X_2) {P}(\mathcal {Z}(s) \in {{\mathcal {C}}}^{zx^\circ }_{k1} | {Z}(0), X_2) \} \end{aligned}$$
(A.2)

since \({\bar{Y}}(s) X^{\circ }(s) = 1\) if and only if \({{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^{zx^\circ }_{01} \cup {{\mathcal {C}}}^{zx^\circ }_{11}\). For \(r_2^{(1)}(s)\) we have

$$\begin{aligned} d \varLambda _2(s) {E}_{{Z}(0),X_2} \{ X_2 \textstyle \sum _{k=0}^1 \exp ( \beta _1 k + \beta '_2 X_2) {P}({{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^{z}_k |{Z}(0), X_2) \} \,. \end{aligned}$$
(A.3)

1.2 Computation of \(r^{(k)}(s;\psi )\)

Note that \(r^{(0)}(s; \psi ) = E \{ {\bar{Y}}_i(s) \exp (\psi _1 X_1^{\circ }(s) + \psi _2' X_2) \}\) is

$$\begin{aligned} {E}_{{Z}(0), X_2} \{ E_{{\bar{Y}}(s), X_1^{\circ }(s)} \{ {\bar{Y}}(s) \exp (\psi _1 X_1^{\circ }(s) + \psi '_2 X_2) |{Z}(0),X_2 \} \} \,, \end{aligned}$$

which is computed as

$$\begin{aligned} E_{{Z}(0),X_2} \{ \textstyle \sum _{l=0}^1 \exp (\psi _1 l + \psi _2'X_2) {P}( {{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^{x^\circ }_l | {Z}(0), X_2) \}\,. \end{aligned}$$
(A.4)

We again partition \(r^{(1)}(s; \psi ) = E \{ {\bar{Y}}(s) X^{\circ }(s) \exp (\psi ' X^{\circ }(t) \} \) and note for the first element

$$\begin{aligned} r_1^{(1)}(s; \psi ) = {E}_{{Z}(0), X_2} \{ e^{\psi _1 + \psi '_2 X_2} {P}({{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^{x^\circ }_1| {Z}(0), X_2) \} \,. \end{aligned}$$
(A.5)

The remaining \(p\times 1\) vector \(r_2^{(1)}(s;\psi )\) is given by

$$\begin{aligned} {E}_{{Z}(0), X_2} \{ X_2 \textstyle \sum _{l= 0}^1 \exp (\psi _1 l + \psi _2'X_2 ) {P}({{\mathcal {Z}}}(s) \in {{\mathcal {C}}}^{x^\circ }_l | {Z}(0), X_2) \} \,. \end{aligned}$$
(A.6)

Together equations (A.1)–(A.6) facilitate computation of (10) and hence determination of \(\psi ^*\).

Joint model fitting via an EM algorithm

In what follows we give the complete data partial log-likelihoods and score functions for the intensities governing transitions in Fig. 3 and use \({{\mathcal {L}}}\) to distinguish these likelihoods from the observed data log-likelihood. The complete data here is conceived as containing the times of all marker transitions over (0, V), in which case the complete data likelihood can be factored into component functions that can be maximized separately (Cook and Lawless 2018, Chapter 2).

1.1 Complete data scores for the marker process

Markov intensities are adopted for the marker process giving the complete data partial log-likelihood contributions of the form

$$\begin{aligned} \log {{\mathcal {L}}}_j = \sum _{i=1}^n \int _0^{\infty } {\bar{Y}}_{ij}(s) \left\{ d N_{ij}(s) \log d \varLambda _j(s | X_{i2}) - d \varLambda _j(s | X_{i2}) \right\} \,,~ j = 0, 1 \,, \end{aligned}$$

with \(d \varLambda _j(t | X_2) = d \varLambda _{jo}(t) \exp (\gamma '_j X_2)\) where \(d \varLambda _{jo}(t)\) is the baseline transition rate. Flexibility is desired for the marker process but semiparametric methods are challenging since the \(j \rightarrow 3-j\) transitions are not observed – we adopt piecewise-constant baseline rate functions and let \(0 = b_{j0}< b_{j1}< \cdots < b_{j, K_j - 1} = \infty \) denote cutpoints for the \(j \rightarrow j-1\) baseline rate, giving \({{\mathcal {B}}}_{jk} = [b_{j, k-1}, b_{jk})\), \(k = 1, \ldots , K_j\), \(j = 0, 1\). We let \(d \varLambda _{jo}(s)/ds = \exp (\alpha _{jk})\) if \(s \in {{\mathcal {B}}}_{jk}\) and \(\alpha _j = (\alpha _{j1}, \ldots , \alpha _{j K_j})'\). The complete data score function for the \(\alpha _{jk}\) are

$$\begin{aligned} \sum _{i=1}^n \int _{0}^\infty {\bar{Y}}_{ij}(s) I(s \in {{\mathcal {B}}}_{jk}) [ dN_{ij}(s) - d\varLambda _j(s|X_{i2})) ] \end{aligned}$$
(B.1)

which can be rewritten as

$$\begin{aligned} U_{jk} = \sum _{i=1}^n \left[ N_{ijk} - e^{\alpha _{jk} + \gamma _j' X_{i2}} S_{ijk} \right] \,, \end{aligned}$$
(B.2)

where \(N_{ijk} = \int _0^{\infty } I(s \in {{\mathcal {B}}}_{jk}) d {\bar{N}}_{ij}(s)\) is the number of \(j \rightarrow 1-j\) transitions over \({{\mathcal {B}}}_{jk}\) for indivdual i and \(S_{ijk} = \int _0^{\infty } {\bar{Y}}_{ij}(s) I(s \in {{\mathcal {B}}}_{jk}) ds\) is their time at risk for a transition out of state j in sub-interval \({{\mathcal {B}}}_{jk}\), \(j=0, 1\). The complete data partial score for \(\gamma _j\) is

$$\begin{aligned} U_{j, K_j + 1}&= \sum _{i=1}^n \int _0^{\infty } {\bar{Y}}_{ij}(u) \left[ d N_{ij}(u) - d \varLambda _j(u | X_{i2}) \right] X_{i2} \nonumber \\&= \sum _{i=1}^n \sum _{k=1}^{K_j} \left[ N_{ijk} - e^{\alpha _{jk} + \gamma '_j X_{i2}} S_{ijk} \right] X_{i2} \end{aligned}$$
(B.3)

and we write \(U_j = (U_{j1}, \ldots , U_{j K_j}, U'_{j, K_j + 1})'\) which is the estimating function for \(\theta _j = (\alpha '_j, \gamma '_j)'\). The key elements missing from the intermittent visit process are \(S_{ij} = (S_{ij1}, \ldots , S_{ijK_j})'\) and \(N_{ij} = (N_{ij1}, \ldots , N_{ijK_j})'\), \(j = 0, 1\).

1.2 Complete data scores for failure and censoring intensities

Here the complete data partial log-likelihood for the failure \((l=2)\) and censoring \((l=3)\) process intensities given by

$$\begin{aligned} \log {{\mathcal {L}}}_l = \sum _{i=1}^n \int _0^{\infty } {\bar{Y}}_i(s) \left\{ d N_{il}(s) \log d \varLambda _l(s | X_i(s)) - d \varLambda _l(s | X_i(s)) \right\} \,. \end{aligned}$$

We let \(0 = b_{l0}< b_{l1}< \cdots< b_{l, K_l - 1} < b_{l K_l} = \infty \) be \(K_l - 1\) cutpoints, giving intervals \({{\mathcal {B}}}_{lk}= (b_{l,k-1}, b_{lk})\) for the piecewise-constant intensities of the form \(d \varLambda _{lo}(t)/dt = \exp (\alpha _{lk})\) if \(t \in {{\mathcal {B}}}_{lk}\), \(k = 1, \ldots , K_l\) where \(d \varLambda _l(t | X(t)) = d \varLambda _{lo}(t) \exp (\beta ' X(t))\) if \(l=2\) and \(d \varLambda _l(t | X(t)) = d \varLambda _{lo}(t) \exp (\eta _c' X(t))\) if \(l=3\). The complete data score function for \(d\varLambda _{lo}(s)\) is

$$\begin{aligned} \sum _{i=1}^n \int _{0}^\infty {\bar{Y}}_{i}(s) [ dN_{il}(s) - d\varLambda _l(s|X_i(t)) ] \end{aligned}$$
(B.4)

which under the piecewise-constant hazard model gives \(U_{lk} = \partial \log {{\mathcal {L}}}_l / \partial \alpha _{lk}\) of the form

$$\begin{aligned} \sum _{i=1}^n \left\{ \int _0^{\infty }{\bar{Y}}_i(u) I(u \in {{\mathcal {B}}}_{lk}) d N_{il}(u) - e^{\alpha _{lk}} \left[ {{\mathcal {S}}}_{i0k}^{(l)} + {{\mathcal {S}}}_{i1k}^{(l)} e^{\phi _1} \right] e^{\phi '_2 X_{i2}} \right\} \,, \end{aligned}$$
(B.5)

where \(\phi = (\phi _1,\phi _2')'= \beta \) for \(l=2\) and \(\eta _c\) for \(l=3\). \({{\mathcal {S}}}_{ijk}^{(l)} = \int _0^{\infty } {\bar{Y}}_{ij}(s) I(s \in {{\mathcal {B}}}_{lk}) ds\) where the superscript (l) reflects the fact that this is the time at risk of a transition out of state j in interval \({{\mathcal {B}}}_{lk}\) (as opposed to \({{\mathcal {B}}}_{jk}\), \(j = 0, 1\)). For \(\phi \) we have \(U_{l, K_l + 1} = \partial \log {{\mathcal {L}}}_l / \partial \phi \)

$$\begin{aligned} \sum _{i=1}^n \sum _{k=1}^{K_{lj}} \int _{{{\mathcal {B}}}_{lk}} {\bar{Y}}_i(u) I(u \in {{\mathcal {B}}}_{lk}) \left[ d N_{il}(u) - e^{\alpha _{lk} + \phi ' X_i(u)} du\right] X_i(u)\,. \end{aligned}$$
(B.6)

1.3 Complete data scores for modulated Poisson visit process intensities

Here we let \(d \varLambda _4(t | X_i(t))\) be the rate function for visits giving a complete data partial log-likelihood for the visits intensity

$$\begin{aligned} \log {{\mathcal {L}}}_4 \propto \sum _{i=1}^n \int _0^{\infty } {\bar{Y}}_i(s) \left\{ d A_i(s) \log d \varLambda _4(s | X_i(s)) - d \varLambda _4(s | X_i(s)) \right\} \,. \end{aligned}$$

For the visit process, we have \(0 = b_{40}< b_{41}< \cdots< b_{4, K_4 - 1} < b_{4 K_4} = \infty \) be \(K_4 - 1\) cutpoints, giving intervals \({{\mathcal {B}}}_{4k}= (b_{4,k-1},b_{4k})\), and let \(d \varLambda _{4o}(t)/dt = \exp (\alpha _{4k})\) if \(t \in {{\mathcal {B}}}_{4k}\), \(k = 1, \ldots , K_4\) where \(d \varLambda _4(t | X(t)) = d \varLambda _{4o}(t) \exp (\eta _a' X(t))\). The complete data score functions are \(U_{4k} = \partial \log {{\mathcal {L}}}_4 / \partial \alpha _{4k}\) and \(U_{4, K_4 + 1} = \partial \log {{\mathcal {L}}}_4 / \partial \eta _a\) given by

$$\begin{aligned} U_{4k} = \sum _{i=1}^n \left\{ \int _{{{\mathcal {B}}}_{4k}} {\bar{Y}}_i(u) I(u \in {{\mathcal {B}}}_{4k}) dA_i(u) - e^{\alpha _{4k}} \left[ {{\mathcal {S}}}_{i0k} + {{\mathcal {S}}}_{i1k} e^{\eta _a}\right] \right\} \end{aligned}$$
(B.7)

and

$$\begin{aligned} U_{4, K_4 + 1} = \sum _{i=1}^n \sum _{k=1}^{K_4} \int _0^{\infty } {\bar{Y}}_i(u) I(u \in {{\mathcal {B}}}_{4k}) \left[ d A_{i}(u) - e^{\alpha _{4k} + \eta '_a X_i(u) } du \right] X_i(u) \,.\nonumber \\ \end{aligned}$$
(B.8)

1.4 Computation of the conditional expectations

The elements that are missing include \(S_{ijk}\) and \(N_{ijk}\) in the complete data estimating functions for marker processes, and the covariate path \(\{X_i(u), 0 < u \}\) for the failure, censoring and visit process intensities. We let

$$\begin{aligned} D_i = \{ {\bar{Y}}_i(s), d {\bar{N}}_{i2}(s), d {\bar{N}}_{i3}(s), d A_i(s), X_{i1}^{\circ }(s), 0< s <V_i, X_{i2} \} \end{aligned}$$

denote the observed data for individual i, \(i = 1, \ldots , n\). Then

$$\begin{aligned} E\{S_{ijk} | D_i \} = \int _0^{\infty } I(s \in {{\mathcal {B}}}_{jk}) E\{ {\bar{Y}}_{ij}(s) | D_i \} ds = \int _{{{\mathcal {B}}}_{jk}} {\bar{Y}}_i(s) P({{\mathcal {Z}}}_i(s) \in {{\mathcal {C}}}_j^z | D_i) ds \end{aligned}$$

and

$$\begin{aligned} E\{ N_{ijk} | D_i \} = \int _{{{\mathcal {B}}}_{jk}} {\bar{Y}}_i(s) P({{\mathcal {Z}}}_i(s) \in {{\mathcal {C}}}_j^z | D_i) d \varLambda _j(s | X_{i2}) \,. \end{aligned}$$

For the other estimating functions we require only

$$\begin{aligned} E\{S_{ijk}^{(l)} | D_i \} = \int _{{{\mathcal {B}}}_{lk}} {\bar{Y}}_i(s) P( {{\mathcal {Z}}}_i(s) \in {{\mathcal {C}}}_j^z | D_i) ds \,. \end{aligned}$$

All of these expectations are based on the conditional probability \(P({{\mathcal {Z}}}_i(s) \in {{\mathcal {C}}}_j^z | D_i)\). We discuss how to compute this here by considering two special cases.

1.5 Case 1: \(a_{i r_i(u)}< u < a_{i, r_i(u) + 1}\) where \(A_i(u) = r_i(u)\)

The numerator of \(P({{\mathcal {Z}}}_i(u) \in {{\mathcal {R}}}_1^z | D_i)\) is given by

$$\begin{aligned}&\prod _{j=1}^{r_i(u)} P({{\mathcal {Z}}}_i(a_{ij}^-) = (j-1, X_{i1}(a_{ij}^-), X_{i1}^{\circ }(a_{ij}^-)) | \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \lambda _4(a_{ij} | X_{i1}(a_{ij}^-), \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \\&\quad \times \biggl \{ P({{\mathcal {Z}}}_i(u) = (r_i(u), x_1 = 1, X_{i1}^{\circ }(a_{i r_i(u)})) | {{\mathcal {H}}}_i(a_{i r_i(u)}^{+})) \\&\quad \times P({{\mathcal {Z}}}_i(a_{i, r_i(u) + 1}^{-}) = (r_i(u), X_{i1}(a_{i, r_i(u) + 1}^{-}),\\&\quad \times X_{i1}^{\circ }(a_{i, r_i(u) + 1}^{-})) | {{\mathcal {Z}}}_i(u) = z_i(u), \bar{{\mathcal {H}}}_i^{\circ }(a_{i, r_i(u) + 1}^{-})) \\&\quad \times \lambda _4(a_{i, r_i(u) + 1} | X_{i1}(a_{i, r_i(u) + 1}), \bar{{\mathcal {H}}}_i^{\circ }(a_{i, r_i(u) + 1}^{-})) \biggr \} \\&\quad \times \prod _{j = r_i(u) + 2}^{r_i} P( {{\mathcal {Z}}}_i(a_{ij}^-) = (j-1, X_i(a_{ij}^-),\\&\quad \times X_{i1}^{\circ }(a_{ij}^-)) | \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \lambda _4(a_{ij} | X_{i1}(a_{ij}^-), \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \\&\quad \times \sum _{x_1=0}^1 \biggl \{ P({{\mathcal {Z}}}_i(V_i^-) = (r_1, X_{i1}(V_i^-) = x_1, X_{i1}^{\circ }(V_i^-)) | \bar{{\mathcal {H}}}_i^{\circ }(V_i^-)) \\&\quad \times [\lambda _2(V_i | x_1, X_{i2})]^{\delta _i} [\lambda _3(V_i | x_1, X_{i2})]^{1 - \delta _i} \biggr \} \end{aligned}$$

where \(z_i(u) = (r_i(u), 1, X_i^{\circ }(u))\) and the denominator is given in (12).

1.6 Case 2: \(a_{i r_i}< u < V_i\)

Here the numerator of \(P({{\mathcal {Z}}}_i(u) \in {{\mathcal {R}}}_1^z | D_i)\) is given below:

$$\begin{aligned}&\prod _{j=1}^{r_i} P({{\mathcal {Z}}}_i(a_{ij}^-) = (j-1, X_{i1}(a_{ij}^-), X_{i1}^{\circ }(a_{ij}^-) | \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \lambda _4(a_{ij} | X_{i1}(a_{ij}^-), \bar{{\mathcal {H}}}_i^{\circ }(a_{ij}^-)) \\&\quad \times \sum _{x_1^{\dag }=0}^{1} \biggl \{ P( {{\mathcal {Z}}}_i(u) = (r_1, x_1 = 1, X_{i1}^{\circ }(u)) | \bar{{\mathcal {H}}}_i^{\circ }(a_{ir_i}^+)) \\&\quad \times P({{\mathcal {Z}}}_i(V_i) = (r_i, x_1^{\dag }, X_{i1}^{\circ }(V_i)) | {{\mathcal {Z}}}_i(u) = z_i(u), \bar{{\mathcal {H}}}_i^{\circ }(V_i)) \\&\quad \times [\lambda _2(V_i | x_1^{\dag }, X_{i2})]^{\delta _i} [\lambda _3(V_i | x_1^{\dag }, X_{i2})]^{1 - \delta _i} \biggr \} \end{aligned}$$

where \(z_i(u) = (r_i(u), 1, X_i^{\circ }(u))\) and the denominator is given by the observed data likelihood (12).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, R.J., Lawless, J.F. & Xie, B. Marker-dependent observation and carry-forward of internal covariates in Cox regression. Lifetime Data Anal 28, 560–584 (2022). https://doi.org/10.1007/s10985-022-09561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-022-09561-9

Keywords

Navigation