Skip to main content

Advertisement

Log in

Parametric survival densities from phase-type models

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

After a brief historical survey of parametric survival models, from actuarial, biomedical, demographical and engineering sources, this paper discusses the persistent reasons why parametric models still play an important role in exploratory statistical research. The phase-type models are advanced as a flexible family of latent-class models with interpretable components. These models are now supported by computational statistical methods that make numerical calculation of likelihoods and statistical estimation of parameters feasible in theory for quite complicated settings. However, consideration of Fisher Information and likelihood-ratio type tests to discriminate between model families indicates that only the simplest phase-type model topologies can be stably estimated in practice, even on rather large datasets. An example of a parametric model with features of mixtures, multiple stages or ‘hits’, and a trapping-state is given to illustrate simple computational tools in R, both on simulated data and on a large SEER 1992–2002 breast-cancer dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aalen OO (1995) Phase type distributions in survival analysis. Scand J Stat 22:447–463

    MATH  Google Scholar 

  • Aalen OO, Gjessing H (2001) Understanding the shape of the hazard rate: a process point of view. Stat Sci 16:1–22

    MATH  MathSciNet  Google Scholar 

  • Andersen P, Borgan Ø, Gill R, Keiding N (1993) Statistical models for counting processes. Springer, New York

    Book  Google Scholar 

  • Anderson W, Chen B, Jatoi I, Rosenberg P (2006) Effects of estrogen receptor expression and histopathology on annual hazard rates of death from breast cancer. Breast Cancer Res Treat 100:121–126

    Article  Google Scholar 

  • Armitage P, Doll R (1954) The age distribution of cancer and a multistage theory of carcinogeneisis. Br J Cancer 8:1–12

    Article  Google Scholar 

  • Aslett LJM (2011) Inference for phase-type distributions. http://cran.r-project.org/web/packages/PhaseType/PhaseType.pdf

  • Aslett LJM, Wilson SP (2011) Markov Chain Monte Carlo for inference on phase-type models. Proceedings of ISI

  • Asmussen S (1992) Phase-type representations in random walk and queueing problems. Ann Prob 20:772–789

    Article  MATH  MathSciNet  Google Scholar 

  • Asmussen S, Nerman O, Olsson M (1996) Fitting phase-type distributions via the EM algorithm. Scand J Stat 23:419–441

    MATH  Google Scholar 

  • Ausin M, Wiper M, Lillo R (2004) Bayesian estimation for the M/G/1 queue using a phase-type approximation. J Stat Plan Inference 118:83–101

    Article  MATH  MathSciNet  Google Scholar 

  • Binder D (1983) On the variances of asymptotically normal estimators from complex surveys. Int Stat Rev 51:279–292

    Article  MATH  MathSciNet  Google Scholar 

  • Bladt M, Gonzalez A, Lauritzen SL (2003) The estimation of phase-type related functionals using Markov Chain Monte Carlo methods. Scand Actuar J 4:280–300

    Article  MathSciNet  Google Scholar 

  • Bobbio A, Horváth A, Scarpa M, Telek M (2003) Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Perform Evaluation 54:1–32

    Article  Google Scholar 

  • Bobbio A, Horváth A, Telek M (2005) Matching three moments with minimal acyclic phase-type distributions. Stoch Models 21:303–326

    Article  MATH  MathSciNet  Google Scholar 

  • Bongaarts J (2005) Long-range trends in adult mortality: models and projection methods. Demography 42(1):23–49

    Article  Google Scholar 

  • Booth H, Tickle L (2008) Mortality modelling and forecasting: a review of methods. Ann Actuar Sci 3:3–43

    Article  Google Scholar 

  • Bowers N, Gerber H, Hickman J, Jones D, Nesbitt C (1997) Actuarial mathematics, 2nd edn. Society of Actuaries, Schaumburg

    Google Scholar 

  • Brillinger D (1961) A justification of some common laws of mortality. Trans Soc Actuar XIII(116–119):1961

    Google Scholar 

  • Casale G, Zhang EZ, Smirni E (2010) Kpc-toolbox: best recipes for automatic trace fitting using markovian arrival processes. Perform Evaluation 67:873–896

    Article  Google Scholar 

  • Cox DR (1955) A use of complex probabilities in the theory of stochastic processes. Proc Camb Philos Soc 51:313–319

    Article  MATH  Google Scholar 

  • Dutang C, Goulet V, Pigeon M (2008) Actuar: an R package for actuarial science. J Stat Softw 25(7):38

    Google Scholar 

  • Faddy M, McClean S (1999) Analysing data on lengths of stay of hospital patients using phase-type distributions. Appl Stoch Models in Bus Ind 15:311–317

    Article  MATH  Google Scholar 

  • Feller W (1972) Introduction to probability theory and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585

    Article  Google Scholar 

  • Halley E (1693) An estimate of the degrees of the mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives. Philos Trans R Soc Lond 17:596–610

    Article  Google Scholar 

  • Heiligman L, Pollard J (1980) The age pattern of mortality. J Inst Actuar 107:49–175

    Article  Google Scholar 

  • Horváth A, Telek M (2000) Approximating heavy trailed behavior with phase-type distributions. In 3rd international conference on matrix-analytic methods in stochastic models, Leuven, Belgium

  • Horváth A, Telek M (2002) Phfit: a general phase-type fitting tool. Lecture notes in computer science 2324:82–91

  • Huzurbazar AV (1999) Flowgraph models for generalized phase type distributions with non-exponential waiting times. Scand J Stat 26:145–457

    Article  Google Scholar 

  • Huzurbazar AV (2005) Flowgraph models for multistate time-to-event data. Wiley, New York

    MATH  Google Scholar 

  • Johnson MA (1993) Selecting parameters of phase distributions: combining nonlinear programming, heuristics, and erlang distributions. ORSA J Comput 5:69–83

    Article  MATH  Google Scholar 

  • Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad USA 68:820–823

    Article  Google Scholar 

  • Koissi MC, Shapiro AF, Högnäs G (2006) Evaluating and extending the Lee-Carter model for mortality forecasting: bootstrap confidence interval. Insur Math Econ 38:1–20

    Article  MATH  Google Scholar 

  • Lee M-L, Whitmore G (2006) Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat Sci 21:501–513

    Article  MATH  MathSciNet  Google Scholar 

  • Lee R, Carter L (1992) Modeling and forecasting us mortality. J Am Stat Assoc 87:659–675

    Google Scholar 

  • Lee S, Lin XS (2010) Modeling and evaluating insurance losses via mixtures of Erlang distributions. North Am Actuar J 14:107–130

    Article  MathSciNet  Google Scholar 

  • Lin XS, Liu X (2007) Markov aging process and phase-type law of mortality. North Am Actuar J 11:92–109

    Article  Google Scholar 

  • Macheras P, Iliadis A (2006) Modeling in biopharmaceutics, pharmacokinetics, and pharmacodynamics. Springer, New York

    MATH  Google Scholar 

  • Makeham WM (1860) On the law of mortality and the construction of annuity tables. J Inst Actuar Assur 8:301–310

    Google Scholar 

  • Manton K, Stallard E (1980) A two disease model of female breast cancer: mortality in 1969 among white females in the United States. J Natl Cancer Inst 64:9–16

    Google Scholar 

  • Marshall AH, Zenga M (2009) Simulating coxian phase-type distributions for patient survival. Int Trans Oper Res 16:213–226

    Article  MATH  Google Scholar 

  • McGrory C, Pettitt A, Faddy M (2009) A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean. J Comput Stat Data Anal 53:4311–4321

    Article  MATH  MathSciNet  Google Scholar 

  • Moolgavkar SH (2004) Fifty years of the multistage model: remarks on a landmark paper. Int J Epidemiol 33:1182–1183

    Article  Google Scholar 

  • Neuts MF (1975) Probability of phase type. Liber Amicorum Prof. Emeritus H. Florin, Department of Mathematics. Belgium: University of Louvain, pp. 173–206

  • Neuts MF (1981) Matrix geometric solutions in stochastic models: an algorithmic approach. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Oakes D (1999) Direct calculation of the information matrix via the EM algorithm. J R Stat Soc B 61:479–482

    Article  MATH  MathSciNet  Google Scholar 

  • O’Cinneide CA (1989) On non-uniqueness of representations of phase-type distributions. Stoch Models 5:247–259

    Article  MATH  MathSciNet  Google Scholar 

  • Olsson M (1996) Estimation of phase-type distributions from censored data. Scand J Stat 23:443–460

    MATH  MathSciNet  Google Scholar 

  • Olsson M (1998) The EMpht programme. http://home.imf.au.dk/smus/dl/EMusersguide.ps

  • R Development Core Team (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Sengupta B (1989) Markov processes whose steady-state distribution is matrix-exponential with an application to the GI/G/1 queue. Adv Appl Probab 21:159–180

    Article  MATH  Google Scholar 

  • Singpurwalla N (1996) On competing risk and degradation processes. IMS Lecture notes: monograph series 49:229–240

  • Slud EV, Suntornchost J (2013) Monte Carlo studies for evaluating phase-type parameter estimation, and a Fisher information calculation, (Preprint)

  • Suntornchost J, Slud EV, Wei R (2011) Modeling US cause-specific mortality using an age-segmented Lee-Carter model, (Preprint)

  • Thümmler A, Buchholz P, Telek M (2006) A novel approach for phase-type fitting with the EM algorithm. IEEE Trans Depend Secur Comput 3:245–258

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Philip Rosenberg and William Anderson for an introduction to the breast cancer dataset and research questions of Anderson et al. (2006), and for their encouragement on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiraphan Suntornchost.

Additional information

Disclaimer This paper describes research of its authors, and is released to inform interested parties and encourage discussion. Results and conclusions are the authors’ and have not been endorsed by the Census Bureau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 233 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slud, E.V., Suntornchost, J. Parametric survival densities from phase-type models. Lifetime Data Anal 20, 459–480 (2014). https://doi.org/10.1007/s10985-013-9278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-013-9278-0

Keywords

Navigation