Skip to main content

Advertisement

Log in

Land-use and land-cover change processes in the Upper Uruguay Basin: linking environmental and socioeconomic variables

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Land-use and land-cover change affects both ecological and socioeconomic processes, motivating the integration of environmental and socioeconomic data to help understand this change. In this study, we propose a method for the characterisation and spatial analysis of land use and cover change in the Upper Uruguay River Basin (Brazil) based on (i) the characterisation of six LUCC processes—degradation, regeneration, intensification, extensification, silviculture expansion and urbanisation—by the combination of 2002 and 2008 land-use and land-cover classifications of Landsat/TM imagery and on (ii) the investigation of the relationships between the LUCC processes and environmental and socioeconomic variables via the combination of canonical correspondence analysis, linear and local spatial regression models (OLS and GWR) and spatial clustering procedures (SKATER), using environmental data, including geomorphometric data, landscape metrics and census socioeconomic statistics. The LUCC processes could be explained in terms of the associations between the selected physical, ecological and social variables that allowed the terrain, landscape fragmentation and socioeconomic characteristics to be related to various LUCC processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves DS (2012) Two cultures, multiple theoretical perspectives: the problem of integration of natural and social sciences in earth system research. In: Young SS, Silvern SE (eds) International perspectives on environmental global change. InTech, Rijeka

  • Anselin L (2002) Under the hood: issues in the specification and interpretation of spatial regression models. Agric Econ 27:247–267

    Article  Google Scholar 

  • Assunção RM, Neves MC, Câmara G, Freitas CC (2006) Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. Int J Geogr Inf Sci 20(7):797–811

    Article  Google Scholar 

  • Batistella M, Valladares GS (2009) Farming expansion and land degradation in Western Bahia, Brazil. Biotaneotropica 9(3):61–76

    Google Scholar 

  • Bivand R (2011) Spatial dependence: weighting schemes; statistics and models. R package version 0.5-40. Available online at: http://cran.r-project.org/web/packages/spdep/spdep.pdf. Accessed 19 Oct 2011

  • Bivand R, Yu D (2011). spgwr: Geographically weighted regression. R package version 0.6-13. Available online at: http://cran.r-project.org/web/packages/spgwr/spgwr.pdf. Accessed 19 Oct 2011

  • Braak CJF (1986) Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol 25(1):17–33

    Article  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Cunha MCL, Monguilhott M, Saldanha DL, Guasselli LA, Pereira G (2011) Quantificação da dinâmica dos remanescentes florestais no Município de Jaquirana, RS, em imagens de satélite. Rev Árvore 35(4):867–873

    Article  Google Scholar 

  • DEFINIENS (2007) Definiens Developer 7 reference book. Definiens AG, Munich

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Evans IS (1972) General geomorphometry, derivations of altitude and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Methuen, London

    Google Scholar 

  • Farina A (1998) Principles and methods in landscape ecology. Chapman & Hall, London

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Fox J, Rindfuss RR, Walsh S, Mishra V (2003) People and the environment: approaches for linking household and community surveys to remote sensing and GIS. Kluwer, Norwell

    Google Scholar 

  • Grohmann CH, Smith MJ, Riccomini C (2011) Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE T Geosci Remote 49(4):1200–1213

    Article  Google Scholar 

  • Hietel E, Waldhardt R, Otte A (2004) Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecol 19(5):473–489

    Article  Google Scholar 

  • Hudson WD, Ramm CW (1987) Correct formulation of the kappa coefficient of agreement. Photogram Eng Remote Sens 53:421–422

    Google Scholar 

  • IBGE (2000) Censo demográfico: resultados do universo. IBGE, Rio de Janeiro

    Google Scholar 

  • Kupfer JA, Farris CA (2007) Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landscape Ecol 22(6):837–852

    Article  Google Scholar 

  • Lepš J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Lesschen JP, Verburg PH, Staal SJ (2005) Statistical methods for analyzing the spatial dimension of changes in land use and farming systems. The International Livestock Research Institute/LUCC Focus 3 Office, Nairobi/Wageningen

  • Leung Y, Mei CL, Zhang WX (2000) Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environ Plan A 32(5):871–890

    Article  Google Scholar 

  • Liverman DM, Cuesta RMR (2008) Human interactions with the Earth system: people and pixels revisited. Earth Surf Proc Land 33:1458–1471

    Article  Google Scholar 

  • Liverman DM, Moran EF, Rindfuss RR, Stern PC (eds) (1998) People and pixels, linking remote sensing and social science. National Academy Press, Washington

    Google Scholar 

  • Lloyd CD (2011) Local models for spatial analysis. CRC Press, Boca Raton

    Google Scholar 

  • Machado LO (1998) A fronteira agrícola na Amazônia brasileira. In: Christofoletti A et al (eds) Geografia e Meio Ambiente no Brasil. Hucitec, São Paulo

    Google Scholar 

  • Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski W, Fernandes LC (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114(5):1117–1129

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1995) Fragstats: spatial pattern analysis program for quantifying landscape structure. US Department of Agriculture, Portland

    Google Scholar 

  • Meyer WB, Turner BL II (1992) Human population growth and global land-use/cover change. Ann Rev Ecol Syst 23:39–61

    Article  Google Scholar 

  • Munyati C, Makgale D (2009) Multitemporal Landsat TM imagery analysis for mapping and quantifying degraded rangeland in the Bahurutshe communal grazing lands, South Africa. Int J Remote Sens 30(14):3649–3668

    Article  Google Scholar 

  • Navulur K (2007) Multispectral image analysis using object-oriented paradigm. CRC Press, Boca Raton

    Google Scholar 

  • Neter J, Kutner MH, Wasserman W, Nachtscheim CJ (1996) Applied linear regression models. McGraw-Hill College, New York

    Google Scholar 

  • Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131

    Article  Google Scholar 

  • Overmars KP, Koning GHJ, Veldkamp A (2003) Spatial autocorrelation in multi-scale land use models. Ecol Model 164(2–3):257–270

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Shimabukuro YE, Smith JA (1991) The least-square mixing models to generate fraction images derived from remote sensing multispectral data. IEEE T Geosci Remote 29(1):16–20

    Article  Google Scholar 

  • Soares-Filho BS, Garcia RA, Rodrigues H, Moro S, Nepstad D (2008) Nexos entre as dimensões socioeconômicas e o desmatamento: a caminho de um modelo integrado. In: Batistella M et al (eds) Amazônia: natureza e sociedade em transformação. Edusp, São Paulo

    Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21(153):65–66

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK, Ligtenberg A (2010) An agent-based approach to model land-use change at a regional scale. Landscape Ecol 25(2):185–199

    Article  Google Scholar 

  • Valeriano MM, Rosseti DF (2011) Topodata: Brazilian full coverage refinement of SRTM data. Appl Geogr 32(2):300–309

    Article  Google Scholar 

  • Vannier C, Vasseur C, Hubert-Moy L, Baudry J (2011) Multiscale ecological assessment of remote sensing images. Landscape Ecol 26(8):1053–1069

    Article  Google Scholar 

  • Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21(8):1171–1183

    Article  Google Scholar 

  • Walsh C, MacNally R (2011) Hierarchical partitioning. R package version 1.0-3. Available online at: http://cran.r-project.org/web/packages/hier.part/hier.part.pdf. Accessed 20 Oct 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Wellausen Dias de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, M.W.D., Santos, J.R.d. & Alves, D.S. Land-use and land-cover change processes in the Upper Uruguay Basin: linking environmental and socioeconomic variables. Landscape Ecol 28, 311–327 (2013). https://doi.org/10.1007/s10980-012-9838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9838-9

Keywords

Navigation