Skip to main content
Log in

Towards a measure of functional connectivity: local synchrony matches small scale movements in a woodland edge butterfly

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

This study investigates the sensitivity of local synchrony to movement patterns of the Ringlet butterfly (Aphantopus hyperantus). We examine whether population synchrony, describing the correlated fluctuations of conspecific populations, may prove an effective surrogate measure for monitoring functional connectivity in this species without the requirement of exhaustive sampling. We compared the effect on population synchrony of two different distance measures, direct (Euclidean) distance and distance via woodland rides and edges, and also of habitat matrix composition. Population synchrony of A. hyperantus was calculated as the pairwise correlation between population time-series using 20 years of data from UK butterfly monitoring scheme transects. Local population synchrony was better explained by distance via woodland edges than direct distance, especially for woodland-dominated transects. These results are consistent with mark-recapture data previously collected on the Ringlet butterfly. The results indicate a sensitivity of population synchrony to butterfly local dispersal behaviour, particularly, to the use of habitat corridors and other functional dispersal routes. Population synchrony is considered to have potential as a surrogate measure of functional connectivity. With development, this method could become a valuable conservation tool for identifying important landscape features which promote species’ connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreassen HP, Hertzberg K, Ims RA (1998) Space-use responses to habitat fragmentation and connectivity in the root vole Microtus oeconomus. Ecology 79:1223–1235

    Google Scholar 

  • Bellamy PE, Rothery P, Hinsley SA (2003) Synchrony of woodland bird populations: the effect of landscape structure. Ecography 26:338–348

    Article  Google Scholar 

  • Benton TG, Lapsley CT, Beckerman AP (2001) Population synchrony and environmental variation: an experimental demonstration. Ecol Lett 4:236–243

    Article  Google Scholar 

  • Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2010) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Casula P (2006) Evaluating hypotheses about dispersal in a vulnerable butterfly. Ecol Res 21:263–270

    Article  Google Scholar 

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Parage aegeria L.). Landscape Ecol 18:561–573

    Article  Google Scholar 

  • Clegg SM, Kelly JF, Kimura M, Smith TB (2003) Combining genetic markers and stable isotopes to reveal population connectivity and migration patterns in a Neotropical migrant, Wilson’s warbler (Wilsonia pusilla). Mol Ecol 12:819–830

    Article  PubMed  CAS  Google Scholar 

  • den Boer PJ (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53

    Article  Google Scholar 

  • Fontaine C, Gonzalez A (2005) Population synchrony induced by resource fluctuations and dispersal in an aquatic microcosm. Ecology 86:1463–1471

    Article  Google Scholar 

  • Fox R, Asher J, Brereton T, Roy DB, Warren M (2006) The state of butterflies in Britain and Ireland. Pisces Publications, Oxford

    Google Scholar 

  • González-Megías A, Menéndez R, Roy DB, Brereton T, Thomas CD (2008) Changes in the composition of British butterfly assemblages over two decades. Glob Chang Biol 14:1464–1474

    Article  Google Scholar 

  • Haddad NM (1999) Corridor use predicted from behaviors at habitat boundaries. Am Nat 153:215–227

    Article  Google Scholar 

  • Haddad NM, Holyoak M, Mata TM, Davies KF, Melboune BA, Preston K (2008) Species’ traits predict the effects of disturbance and productivity on diversity. Ecol Lett 11:348–356

    Article  PubMed  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego

    Google Scholar 

  • Hanski I, Woiwod IP (1993) Spatial synchrony in the dynamics of moth and aphid populations. J Anim Ecol 62:656–668

    Article  Google Scholar 

  • Hudson PJ, Cattadori IM (1999) The Moran effect: a cause of population synchrony. Trends Ecol Evol 14:1–2

    Article  PubMed  Google Scholar 

  • Kendall BE, Bjørnstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation, and spatial synchrony in population dynamics. Am Nat 155:628–636

    Article  PubMed  Google Scholar 

  • Kerlin DH, Haydon DT, Miller D, Aebischer NJ, Smith AA, Thirgood SJ (2007) Spatial synchrony in red grouse population dynamics. Oikos 116:2007–2016

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Kiviniemi K, Löfgren A (2009) Spatial (a)synchrony in population fluctuations of five plant species in fragmented habitats. Basic Appl Ecol 10:70–78

    Article  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

    Article  PubMed  Google Scholar 

  • Kuefler D, Haddad NM (2006) Local versus landscape determinants of butterfly movement behaviors. Ecography 29:549–560

    Article  Google Scholar 

  • Lande R, Engen S, Sæther B-E (1999) Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. Am Nat 154:271–281

    Article  PubMed  Google Scholar 

  • Liebhold A, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Ann Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  • Liebhold AM, Johnson DM, Bjørnstad ON (2006) Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity. Popul Ecol 48:131–138

    Article  Google Scholar 

  • Moilanen A, Hanski IA (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Moilanen A, Hanski IA (2001) On the use of connectivity measures in spatial ecology. Oikos 95:147–151

    Article  Google Scholar 

  • Moran PAP (1953) The statistical analysis of the Canadian lynx cycle II synchronization and meteorology. Aust J Zool 1:291–298

    Article  Google Scholar 

  • Oliver TH, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484

    Article  PubMed  Google Scholar 

  • Oliver TH, Roy DB, Brereton T, Thomas JA (2012) Reduced variability in range-edge butterfly populations over three decades of climate warming. Glob Chang Biol 18:1531–1539

    Article  Google Scholar 

  • Ouin A, Martin M, Burel F (2008) Agricultural landscape connectivity for the meadow brown butterfly (Maniola jurtina). Agric Ecosyst Environ 124:193–199

    Article  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1999) Dispersal and spatial scale affect synchrony in spatial population dynamics. Ecol Lett 2:114–120

    Article  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (2000) Spatial synchrony in populations of birds: effects of habitat, population trend, and spatial scale. Ecology 81:2112–2125

    Article  Google Scholar 

  • Pollard E (1991) Synchrony of population fluctuation: the dominant influence of widespread factors on local butterfly populations. Oikos 60:7–10

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, London

    Google Scholar 

  • Post E, Forchhammer MC (2004) Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proc Natl Acad Sci 101:9286–9290

    Article  PubMed  CAS  Google Scholar 

  • Powney GD, Roy DB, Chapman D, Oliver TH (2010) Synchrony of butterfly populations across species’ geographic ranges. Oikos 119:1690–1696

    Article  Google Scholar 

  • Powney GD, Roy DB, Chapman D, Brereton T, Oliver TH (2011) Measuring functional connectivity using long-term monitoring data. Methods Ecol Evol 2:527–533

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Raimondo S, Liebhold AM, Strazanac JS, Butler L (2004) Population synchrony within and among Lepidoptera species in relation to weather, phylogeny, and larval phenology. Ecol Entomol 29:96–105

    Article  Google Scholar 

  • Ranta E, Kaitala V, Lindstrom J, Helle E (1997) The Moran effect and synchrony in population dynamics. Oikos 78:136–142

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • Roland J, Matter SF (2007) Encroaching forests decouple alpine butterfly population dynamics. Proc Natl Acad Sci 104:13702–13704

    Article  PubMed  CAS  Google Scholar 

  • Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Google Scholar 

  • Rothery P, Roy DB (2001) Application of generalized additive models to butterfly transect count data. J Appl Stat 28:897–909

    Article  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–262

    Article  PubMed  Google Scholar 

  • Schneider C, Fry G (2005) Estimating the consequences of land-use changes on butterfly diversity in a marginal agricultural landscape in Sweden. J Nat Conserv 13:247–256

    Article  Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545

    Article  Google Scholar 

  • Schwartz MK, Mills LS, McKeivey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415:520–522

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365

    Article  Google Scholar 

  • Sutcliffe OL, Thomas CD, Moss D (1996) Spatial synchrony and asynchrony in butterfly population dynamics. J Anim Ecol 65:85–95

    Article  Google Scholar 

  • Sutcliffe OL, Thomas CD, Peggie D (1997a) Area-dependent migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes. Oecologica 109:229–234

    Article  Google Scholar 

  • Sutcliffe OL, Thomas CD, Yates TJ, Greatorex-Davies JN (1997b) Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologica 109:235–241

    Article  Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE (2003) Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31

    Article  Google Scholar 

  • Swanson BJ, Johnson DR (1999) Distinguishing causes of intraspecific synchrony in population dynamics. Oikos 86:265–274

    Article  Google Scholar 

  • Thomas CD (1991) Spatial and temporal variability in a butterfly population. Oecologia 87:577–580

    Article  Google Scholar 

  • Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc B 360:339–357

    Article  CAS  Google Scholar 

  • Thomas JA, Moss D, Pollard E (1994) Increased fluctuations of butterfly populations towards the northern edges of species’ ranges. Oikos 17:215–220

    Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • van Swaay CAM, Noiwicki P, Settele J, van Strien AJ (2008) Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers Conserv 17:3455–3469

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to all the recorders who contribute to the UKBMS. The UKBMS is a partnership between Butterfly Conservation and the Natural Environment Research Council, Centre for Ecology and Hydrology. The UKBMS is co-funded by a consortium of government agencies, led by Defra. We thank Steve Freeman, Colin Harrower and John Redhead for statistics and GIS advice. We also thank Odette Sutcliffe, Kevin Watts, Chris Thomas, Jane Hill, Tom Brereton, and two anonymous reviewers for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Powney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powney, G.D., Broaders, L.K. & Oliver, T.H. Towards a measure of functional connectivity: local synchrony matches small scale movements in a woodland edge butterfly. Landscape Ecol 27, 1109–1120 (2012). https://doi.org/10.1007/s10980-012-9771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9771-y

Keywords

Navigation