Skip to main content

Advertisement

Log in

Simulated village locations in Thailand: a multi-scale model including a neural network approach

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The simulation of rural land use systems in general, and rural settlement dynamics in particular, has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space–time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing a pattern–process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates that the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Simulation experiments demonstrate that this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal C, Green GM, Grove JM, Evans TP, Schweik CM (2002) A review and assessment of land use change models: dynamics of space, time, and human choice. Gen Tech Rep NE-297. Newton Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Available online at: http://www.treesearch.fs.fed.us/pubs/5027. Accessed 20 Jan 2009

  • Alberti M, Marzluff JM, Shulenberger E, Bradley G, Ryan C, Zumbrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53(12):1169–1179. doi:10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2

    Article  Google Scholar 

  • Austin MP (1985) Continuum concept, ordination methods, and niche theory. Annu Rev Ecol Syst 16:39–61. doi:10.1146/annurev.es.16.110185.000351

    Article  Google Scholar 

  • Batty M, Xie Y (1994) From cells to cities. Environ Plann B Plann Des 21:s31–s48. doi:10.1068/b21s031

    Article  Google Scholar 

  • Bell TL, Church RL (1985) Location-allocation modeling in archaeological settlement pattern research: some preliminary applications. World Archaeol 16(3):354–371

    Article  Google Scholar 

  • Bennett DA, Tang W (2006) Modelling adaptive, spatially aware, and mobile agents: elk migration in Yellowstone. Int J Geogr Inf Sci 20(9):1039–1066. doi:10.1080/13658810600830806

    Article  Google Scholar 

  • Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19:153–174. doi:10.1080/13658810410001713399

    Article  Google Scholar 

  • Bura S, Guerin-Pace F, Mathian H, Pumain D, Sanders L (1996) Multiagent systems and the dynamics of settlement systems. Geogr Anal 28(2):161–178

    Google Scholar 

  • Chatfield C (2004) The analysis of time series: an introduction, 6th edn. Chapman and Hall, Boca Raton

    Google Scholar 

  • Christaller W (1966) Central places in Southern Germany. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B Plann Des 24:247–261. doi:10.1068/b240247

    Article  Google Scholar 

  • Cliff AD, Ord JK, Haggett P, Versey GR (1981) Spatial diffusion: an historical geography of epidemics in an island community. Cambridge University Press, New York

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. doi:10.1177/001316446002000104

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. doi:10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. CRC/Lewis Press, Boca Raton

    Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Dean JS, Gumerman GJ, Epstein JM, Axtell RL, Swedlund AC, Parker MT, McCarroll S (2000) Understanding Anasazi culture change through agent-based modeling. In: Kohler TA, Gumerman GJ (eds) Dynamics in human and primate societies: agent-based modeling of social and spatial processes. Oxford University Press, Oxford, New York, pp 179–205

    Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Oxford University Press, Oxford, New York

    Google Scholar 

  • Diggle PJ, Cox TF (1983) Some distance-based tests of independence for sparsely-sampled multivariate spatial point patterns. Int Stat Rev 51:11–23. doi:10.2307/1402729

    Article  Google Scholar 

  • Entwisle B, Walsh SJ, Rindfuss RR, Chamratrithirong A, Liverman D, Morgan EF, Rindfuss RR, Stern PC (1998) Land-use/land-cover (LULC) and population dynamics, Nang Rong, Thailand. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: using remotely sensed data in social science research. National Academy Press, Washington, DC, pp 121–144

    Google Scholar 

  • Entwisle B, Malanson GP, Rindfuss RR, Walsh SJ (2008) An agent based model of household dynamics and land use change: getting inside the black box. J Land Use Sci 3:73–93. doi:10.1080/17474230802048193

    Article  Google Scholar 

  • Faraway J, Chatfield C (1998) Time series forecasting with neural networks: a comparative study using the airline data. J R Stat Soc C Appl Stat 47:231–250. doi:10.1111/1467-9876.00109

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer, London

    Google Scholar 

  • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol (Amsterdam) 137:1–31. doi:10.1016/0022-1694(92)90046-X

    Article  Google Scholar 

  • Gahegan M (2003) Is inductive machine learning just another wild goose (or might it lay the golden egg)? Int J Geogr Inf Sci 17:69–92. doi:10.1080/713811742

    Article  Google Scholar 

  • Garner BJ (1967) Models of urban geography and settlement location. In: Chorley R, Haggett P (eds) Models in geography. Methuen, London, pp 303–360

    Google Scholar 

  • Getis A (1964) Temporal land-use pattern analysis with the use of nearest neighbor and quadrat methods. Ann Assoc Am Geogr 54:391–399. doi:10.1111/j.1467-8306.1964.tb00497.x

    Article  Google Scholar 

  • Gould PG (1994) Neural computing and the aids pandemic: the case of Ohio. In: Hewitson BC, Crane RG (eds) Neural nets: applications in geography. Kluwer, Dordrecht, pp 101–120

    Google Scholar 

  • Greig-Smith P (1983) Quantitative plant ecology. University of California, Berkeley

    Google Scholar 

  • Haining R (1982) Describing and modeling rural settlement maps. Ann Assoc Am Geogr 72:211–223. doi:10.1111/j.1467-8306.1982.tb01820.x

    Article  Google Scholar 

  • Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of IEEE first international conference on neural networks, San Diego, June 1987, III. IEEE, New York, pp 11–14

  • Hudson JC (1967) Theoretical settlement geography. Dissertation/Thesis, Unpublished, Department of Geography, The University of Iowa, Iowa City

  • Hudson JC (1969) A location theory for rural settlement. Ann Assoc Am Geogr 59:365–381. doi:10.1111/j.1467-8306.1969.tb00676.x

    Article  Google Scholar 

  • Huigen MGA (2004) First principles of the MameLuke multi-actor modelling framework for land use change, illustrated with a Philippine case study. J Environ Manag 72:5–21. doi:10.1016/j.jenvman.2004.01.010

    Article  Google Scholar 

  • Hutchinson GE (1958) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Kamarianakis Y, Prastacos P (2005) Space–time modeling of traffic flow. Comput Geosci 31:119–133. doi:10.1016/j.cageo.2004.05.012

    Article  Google Scholar 

  • Kendall MG (1970) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kohler TA, Carr E (1997) Swarm-based modeling of prehistoric settlement systems in south-western North America. In: Archaeological applications of GIS: Proceedings of Colloquium II, UISPP, 13th Congress, Forli, September 1996. Sydney University Archaeological Methods Series 5, Sydney University, Sydney (CD-ROM)

  • Koukoulas S, Blackburn GA (2001) Introducing new indices for accuracy evaluation of classified images representing semi-natural woodland environments. Photogramm Eng Remote Sens 67(4):499–510

    Google Scholar 

  • Laland KN, Brown GR (2006) Niche construction, human behavior, and the adaptive-lag hypothesis. Evol Anthropol 15:95–104. doi:10.1002/evan.20093

    Article  Google Scholar 

  • Laland KN, Odling-Smee J, Feldman MW (2000) Niche construction, biological evolution, and cultural change. Behav Brain Sci 23:131–175. doi:10.1017/S0140525X00002417

    Article  PubMed  CAS  Google Scholar 

  • Lapedes A, Farber R (1988) How neural nets work. In: Anderson DZ (ed) Neural information processing systems. American Institute of Physics, New York, pp 442–456

    Google Scholar 

  • Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems (New York, Print) 1:431–436. doi:10.1007/s100219900037

    Article  Google Scholar 

  • Li X, Yeh AGO (2002) Neural network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–343. doi:10.1080/13658810210137004

    Article  Google Scholar 

  • Macy MW, Willer R (2002) From factors to actors: computational sociology and agent-based modeling. Annu Rev Sociol 28:143–166. doi:10.1146/annurev.soc.28.110601.141117

    Article  Google Scholar 

  • Malanson GP (1999) Considering complexity. Ann Assoc Am Geogr 89:746–753. doi:10.1111/0004-5608.00174

    Article  Google Scholar 

  • Malanson GP, Zeng Y, Walsh SJ (2006) Complexity at advancing ecotones and frontiers. Environ Plan A 38:619–632. doi:10.1068/a37340

    Article  Google Scholar 

  • Manson S, O’Sullivan D (2006) Complexity theory in the study of space and place. Environ Plan A 38:677–692. doi:10.1068/a37100

    Article  Google Scholar 

  • Mitchell TM (1997) Machine learning. The McGraw-Hill companies, Inc., New York

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Openshaw S, Openshaw C (1997) Artificial intelligence in geography. Wiley, New York

    Google Scholar 

  • Pace RK, Barry R, Clapp JM, Rodriquez M (1998) Spatiotemporal autoregressive models of neighborhood effects. J Real Estate Finance Econ 17:15–33. doi:10.1023/A:1007799028599

    Article  Google Scholar 

  • Page M, Parisel C, Pumain D, Sanders L (2001) Knowledge-based simulation of settlement systems. Comput Environ Urban Syst 25:167–193. doi:10.1016/S0198-9715(00)00022-3

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman, P (2002) Multi-agent systems for the simulation of landuse and land-cover change: a review. Ann Assoc Am Geogr 93(2):316–340

    Google Scholar 

  • Pfeifer PE, Deutsch SJ (1980) Stationarity and invertibility regions for low order STARMA models. Commun Stat Simul Comput 9:551–562. doi:10.1080/03610918008812173

    Article  Google Scholar 

  • Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19(2):197–215. doi:10.1080/13658810410001713416

    Article  Google Scholar 

  • Pontius RG (2002) Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sens 68:1041–1049

    Google Scholar 

  • Popkov YS, Shvetsov VI, Weidlich W (1998) Settlement formation models with entropy operator. Ann Reg Sci 32:267–294. doi:10.1007/s001680050074

    Article  Google Scholar 

  • Pumain D (2000) Settlement systems in the evolution. Geogr Ann Ser B 82(2):73–87. doi:10.1111/j.0435-3684.2000.00075.x

    Article  Google Scholar 

  • Pumain D (2007) The socio-spatial dynamics of systems of cities and innovation processes: a multi-level model. In: Albeverio S, Andrey D, Giordano P, Vancheri A (eds) The dynamics of complex urban systems. Physica-Verlag, Heidelberg, pp 373–389

    Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc B 39:172–212

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. doi:10.1038/323533a0

    Article  Google Scholar 

  • Russell SJ, Norvig P (1995) Artificial intelligence: a modern approach. Prentice Hall, New Jersey

    Google Scholar 

  • Sanders L (2006) Cognition and decision in multi-agent modeling of spatial entities at different geographical scales. In: Portugali J (ed) Complex artificial environments: simulation, cognition and VR in the study and planning of cities. Springer, Berlin, pp 201–218

    Google Scholar 

  • Sanders L, Pumain D, Mathian H, GuerinPace F, Bura S (1997) SIMPOP: a multiagent system for the study of urbanism. Environ Plann B Plann Des 24:287–305. doi:10.1068/b240287

    Article  Google Scholar 

  • Schmit C, Rounsevell MDA (2006) Are agricultural land use patterns influenced by farmer imitation? Agric Ecosyst Environ 115:113–127. doi:10.1016/j.agee.2005.12.019

    Article  Google Scholar 

  • Semple RK, Golledge RG (1970) An analysis of entropy changes in a settlement pattern over time. Econ Geogr 46(2):157–160. doi:10.2307/142623

    Article  Google Scholar 

  • Tang W (2008) Simulating complex adaptive geographic systems: a geographically aware intelligent agent approach. Cartogr Geogr Inform 35(4):239-­263

    Article  Google Scholar 

  • Tibshirani R (1996) A comparison of some error estimates for neural network models. Neural Comput 8:152–163. doi:10.1162/neco.1996.8.1.152

    Article  Google Scholar 

  • Upton GJG (1986) Distance and directional analyses of settlement patterns. Econ Geogr 62(2):167–179. doi:10.2307/144090

    Article  Google Scholar 

  • Vandermeer JH (1972) Niche theory. Annu Rev Ecol Syst 3:107–132. doi:10.1146/annurev.es.03.110172.000543

    Article  Google Scholar 

  • Veldkamp A, Fresco LO (1996) CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Model 91:231–248. doi:10.1016/0304-3800(95)00158-1

    Article  CAS  Google Scholar 

  • Veldkamp A, Fresco LO (1997) Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984). Agric Syst 55:19–43. doi:10.1016/S0308-521X(95)00080-O

    Article  Google Scholar 

  • Veldkamp A, Verburg PH, Kok K, de Koning GHJ, Priess J, Bergsma AR (2001) The need for scale sensitive approaches in spatially explicit land use change modeling. Environ Model Assess 6:111–121. doi:10.1023/A:1011572301150

    Article  Google Scholar 

  • Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21:1171–1183. doi:10.1007/s10980-006-0029-4

    Article  Google Scholar 

  • Verburg PH, de Koning GHJ, Kok K, Veldkamp A, Bouma J (1999) A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Model 116:45–61. doi:10.1016/S0304-3800(98)00156-2

    Article  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Sharifah Mastura SA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag (New York) 30(3):391–405. doi:10.1007/s00267-002-2630-x

    Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modeling: current practice and research priorities. GeoJournal 61:309–324. doi:10.1007/s10708-004-4946-y

    Article  Google Scholar 

  • Verburg PH, Eickhout B, van Meijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77. doi:10.1007/s00168-007-0136-4

    Article  Google Scholar 

  • Walsh SJ, Crawford TW, Welsh WF, Crews-Meyer KA (2001) A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agric Ecosyst Environ 85:47–64. doi:10.1016/S0167-8809(01)00202-X

    Article  Google Scholar 

  • Weidlich W, Munz M (1990) Settlement formation. Part 1: a dynamic theory. Ann Reg Sci 24:83–106. doi:10.1007/BF01579725

    Article  PubMed  CAS  Google Scholar 

  • White R, Engelen G (1994) Urban systems dynamics and cellular automata: fractal structures between order and chaos. Chaos, Solitons Fractals 4:563–583. doi:10.1016/0960-0779(94)90066-3

    Article  Google Scholar 

  • Wu J, Jenerette DD, David JL (2003) Linking land-use change with ecosystem processes: a hierarchical patch dynamic model. In: Guhathakurta S (ed) Integrated land use and environmental models. Springer, Berlin, pp 99–119

    Google Scholar 

  • Zeigler BP, Kim TG, Praehofer H (2000) Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, 2nd edn. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Zhang GQ, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62. doi:10.1016/S0169-2070(97)00044-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research reported here was primarily supported by grants from the National Science Foundation (SBR 93-10366) and the National Aeronautics and Space Administration (NAG5-6002). In addition, grants from the National Institute of Child Health and Human Development (R01-HD33570 and R01-HD25482), the Evaluation Project (USAID DPE-3060-C-00-1054), the MacArthur Foundation (95-31576A-POP), and a center grant to the Carolina Population Center from the National Institute of Child Health and Human Development supported elements of the research and the substantial data collection and processing efforts that underpin it. Numerous staff members and graduate students at the Institute for Population and Social Research, Mahidol University, Thailand and the Carolina Population Center, University of North Carolina, USA participated in the design, pretest, data collection, and the value-added processing associated with this project. The authors thank two anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Malanson, G.P. & Entwisle, B. Simulated village locations in Thailand: a multi-scale model including a neural network approach. Landscape Ecol 24, 557–575 (2009). https://doi.org/10.1007/s10980-009-9322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9322-3

Keywords

Navigation