Skip to main content

Advertisement

Log in

Biotoxins in muscle regeneration research

  • Reviews
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Skeletal muscles are characterized by their unique regenerative capacity following injury due to the presence of muscle precursor cells, satellite cells. This characteristic allows researchers to study muscle regeneration using experimental injury models. These injury models should be stable and reproducible. Variety of injury models have been used, among which the intramuscular injection of myotoxic biotoxins is considered the most common and widespread method in muscle regeneration research. By using isolated biotoxins, researchers could induce acute muscle damage and regeneration in a controlled and reproducible manner. Therefore, it is considered an easy method for inducing muscle injury in order to understand the different mechanisms involved in muscle injuries and tissue response following injury. However, different toxins and venoms have different compositions and subsequently the possible effects of these toxins on skeletal muscle vary according to their composition. Moreover, regeneration of injured muscle by venoms and toxins varies according to the target of toxin or venom. Therefore, it is essential for researcher to be aware of the mechanism and possible target of toxin-induced injury. The current paper provides an overview of the biotoxins used in skeletal muscle research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akpulat U, Onbasilar I, Kocaefe YC (2016) Tenotomy immobilization as a model to investigate skeletal muscle fibrosis (with emphasis on Secreted frizzled-related protein 2). Physiol Genomics 48:397–408

    Article  CAS  PubMed  Google Scholar 

  • Angulo Y, Lomonte B (2009) Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon 54:949–957

    Article  CAS  PubMed  Google Scholar 

  • Baghdadi MB, Tajbakhsh S (2018) Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 433:200–209

    Article  CAS  PubMed  Google Scholar 

  • Barbier J, Popoff MR, Molgo J (2004) Degeneration and regeneration of murine skeletal neuromuscular junctions after intramuscular injection with a sublethal dose of Clostridium sordellii lethal toxin. Infect Immun 72:3120–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6:S146–S168

    Article  CAS  PubMed  Google Scholar 

  • Carlson B (2008) Muscle regeneration in animal models. In: Schiaffino S, Partridge T (eds) Skeletal muscle repair and regeneration, vol 3. Advances in muscle research. Springer, Dordrecht, pp 163–180

    Chapter  Google Scholar 

  • Carlson BM (2014) The biology of long-term denervated skeletal muscle. Eur J Transl Myol 24:3293

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY (2016) Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol 100:6165–6181

    Article  CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Chen C-M, Stott NS, Smith HK (2002) Effects of botulinum toxin A injection and exercise on the growth of juvenile rat gastrocnemius muscle. J Appl Physiol 93:1437–1447

    Article  PubMed  Google Scholar 

  • Cull-Candy SG, Fohlman J, Gustavsson D, Lullmann-Rauch R, Thesleff S (1976) The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience 1:175–180

    Article  CAS  PubMed  Google Scholar 

  • Czerwinska AM, Streminska W, Ciemerych MA, Grabowska I (2012) Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochem Cytobiol 50:144–153

    Article  PubMed  Google Scholar 

  • Dixon RW, Harris JB (1996) Myotoxic activity of the toxic phospholipase, notexin, from the venom of the Australian tiger snake. J Neuropathol Exp Neurol 55:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Fathi B, Harvey AL, Rowan EG (2013) The effect of temperature on the effects of the phospholipase A(2) neurotoxins beta-bungarotoxin and taipoxin at the neuromuscular junction. Toxicon 70:86–89

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MJ, Lima C, Lopes-Ferreira M (2014) Anti-inflammatory effect of Natterins, the major toxins from the Thalassophryne nattereri fish venom is dependent on TLR4/MyD88/PI3K signaling pathway. Toxicon 87:54–67

    Article  CAS  PubMed  Google Scholar 

  • Frick CG, Richtsfeld M, Sahani ND, Kaneki M, Blobner M, Martyn JA (2007) Long-term effects of botulinum toxin on neuromuscular function. Anesthesiology 106:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M, Ito T, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H (2010) Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176:2414–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Denegri ME, Teibler GP, Marunak SL, Hernandez DR, Acosta OC, Leiva LC (2016) Efficient muscle regeneration after highly haemorrhagic Bothrops alternatus venom injection. Toxicon 122:167–175

    Article  CAS  PubMed  Google Scholar 

  • Gawade SP (2004) Snake venom neurotoxins: pharmacological classification. Toxin Rev 23:37–96

    CAS  Google Scholar 

  • Gordon T, Tyreman N, Raji MA (2011) The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci 31:5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasa J, Pérez-Ruíz A, Muñoz MJ, Soteras F, Bobadilla Muñoz M, Baraibar Churio A, Prósper F, Calvo B (2018) A quantitative method for the detection of muscle functional active and passive behavior recovery in models of damage-regeneration. Proc IMechE L 0:1–10

    Google Scholar 

  • Gutierrez JM, Ownby CL (2003) Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon 42:915–931

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Ownby CL, Odell GV (1984) Skeletal muscle regeneration after myonecrosis induced by crude venom and a myotoxin from the snake Bothrops asper (Fer-de-Lance). Toxicon 22:719–731

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Arce V, Brenes F, Chaves F (1990) Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper. Exp Mol Pathol 52:25–36

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JM, Escalante T, Hernandez R, Gastaldello S, Saravia-Otten P, Rucavado A (2018) Why is skeletal muscle regeneration impaired after myonecrosis induced by viperid snake venoms? Toxins (Basel) 10:182

    Article  CAS  Google Scholar 

  • Gutiérrez JM, Rucavado A, Chaves F, Díaz C, Escalante T (2009) Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 54:958–975

    Article  PubMed  CAS  Google Scholar 

  • Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chretien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11:e0147198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42:933–945

    Article  CAS  PubMed  Google Scholar 

  • Harris J (2009) Neuromuscular junction (NMJ): a target for natural and environmental toxins in humans, pp. 539–549

    Chapter  Google Scholar 

  • Harris JB, Johnson MA, Karlsson E (1975) Pathological responses of rat skeletal muscle to a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin Exp Pharmacol Physiol 2:383–404

    Article  CAS  Google Scholar 

  • Harris JB, Grubb BD, Maltin CA, Dixon R (2000) The neurotoxicity of the venom phospholipases a2, notexin and taipoxin. Exp Neurol 161:517–526

    Article  CAS  PubMed  Google Scholar 

  • Harris JB, Vater R, Wilson M, Cullen MJ (2003) Muscle fibre breakdown in venom-induced muscle degeneration. J Anat 202:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SM, Badawoud MH, Al-Hayani AA (2012) Structural alterations induced by botulinum toxin injection in juvenile versus adult rat muscle. Saudi Med J 33:17–23

    PubMed  Google Scholar 

  • Hernández R, Cabalceta C, Saravia-Otten P, Chaves A, Gutiérrez JM, Rucavado A (2011) Poor regenerative outcome after skeletal muscle necrosis induced by Bothrops asper venom: alterations in microvasculature and nerves. PLoS ONE 6:e19834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera C, Macêdo JKA, Feoli A, Escalante T, Rucavado A, Gutiérrez JM, Fox JW (2016a) Muscle tissue damage induced by the venom of Bothrops asper: identification of early and late pathological events through proteomic analysis. PLOS Negl Trop Dis 10:e0004599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera C, Voisin M-B, Escalante T, Rucavado A, Nourshargh S, Gutiérrez JM (2016b) Effects of pi and piii snake venom haemorrhagic metalloproteinases on the microvasculature: a confocal microscopy study on the mouse cremaster muscle. PLoS ONE 11:e0168643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie M, Enomoto M, Shimoda M, Okawa A, Miyakawa S, Yagishita K (2014) Enhancement of satellite cell differentiation and functional recovery in injured skeletal muscle by hyperbaric oxygen treatment. J Appl Physiol (1985) 116:149–155

    Article  CAS  Google Scholar 

  • Inagi K, Connor NP, Schultz E, Ford CN, Cook CH, Heisey DM (1999) Muscle fiber-type changes induced by botulinum toxin injection in the rat larynx. Otolaryngol Head Neck Surg 120:876–883

    Article  CAS  PubMed  Google Scholar 

  • Järvinen TAH, Järvinen M, Kalimo H (2013) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 3:337–345

    Article  PubMed  Google Scholar 

  • Johnson B, Mastnjak R, Resnick IG (2001) Safety and health considerations for conducting work with biological toxins. Appl Biosaf 6:117–135

    Article  Google Scholar 

  • Kim CS, Jang WS, Son IP, Nam SH, Kim YI, Park KY, Kim BJ, Kim MN (2013) Electrophysiological study for comparing the effect of biological activity between type A botulinum toxins in rat gastrocnemius muscle. Hum Exp Toxicol 32:914–920

    Article  CAS  PubMed  Google Scholar 

  • Kozlovac JP, Hawley RJ (2006) Biological toxins: safety and science. Biological Safety. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Kumar TKS, Pandian SK, Srisailam S, Yu C (1998) Structure and function of snake venom cardiotoxins. J Toxicol 17:183–211

    CAS  Google Scholar 

  • Kuruppu S, Smith AI, Isbister GK, Hodgson WC (2008) Neurotoxins from Australo-Papuan elapids: a biochemical and pharmacological perspective. Crit Rev Toxicol 38:73–86

    Article  CAS  PubMed  Google Scholar 

  • Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza AP, Ciriolo MR, Castagnoli L, Gargioli C, Cesareni G (2014) Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS ONE 9:e114018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lapa AJ, Albuquerque EX, Daly J (1974) An electrophysiological study of the effects of D-tubocurarine, atropine, and alpha-bungarotoxin on the cholinergic receptor in innervated and chronically denervated mammalian skeletal muscles. Exp Neurol 43:375–398

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, Gunning PW, Hardeman EC (2013) Aged skeletal muscle retains the ability to fully regenerate functional architecture. Bioarchitecture 3:25–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Liu Y, Lai X, Kuang S (2012) Intramuscular adipose is derived from a non-Pax3 lineage and required for efficient regeneration of skeletal muscles. Dev Biol 361:27–38

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Ferreira M, Barbaro KC, Cardoso DF, Moura-Da-Silva AM, Mota I (1998) Thalassophryne nattereri fish venom: biological and biochemical characterization and serum neutralization of its toxic activities. Toxicon 36:405–410

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Ferreira M, Núñez J, Rucavado A, Farsky SHP, Lomonte B, Angulo Y, Da Silva AMm, Gutiérrez JM (2001) Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish venom in mice. Int J Exp Pathol 82:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes-Ferreira M, Grund LZ, Lima C (2014) Thalassophryne nattereri fish venom: from the envenoming to the understanding of the immune system. J Venom Anim Toxins Incl Trop Dis 20:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Madaro L, Passafaro M, Sala D, Etxaniz U, Lugarini F, Proietti D, Alfonsi MV, Nicoletti C, Gatto S, De Bardi M, Rojas-Garcia R, Giordani L, Marinelli S, Pagliarini V, Sette C, Sacco A, Puri PL (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdy M (2018) Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 374:233–241

    Article  CAS  PubMed  Google Scholar 

  • Mahdy M (2019) Skeletal muscle fibrosis: an overview. Cell Tissue Res 375:575–588

    Article  PubMed  Google Scholar 

  • Mahdy MA, Lei HY, Wakamatsu J-I, Hosaka YZ, Nishimura T (2015) Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 202:18–27

    Article  PubMed  Google Scholar 

  • Mahdy MA, Warita K, Hosaka YZ (2016) Early ultrastructural events of skeletal muscle damage following cardiotoxin-induced injury and glycerol-induced injury. Micron 91:29–40

    Article  CAS  PubMed  Google Scholar 

  • Mahdy MAA, Warita K, Hosaka YZ (2018) Glycerol induces early fibrosis in regenerating rat skeletal muscles. J Vet Med Sci 80:1646–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mebs D, Ownby CL (1990) Myotoxic components of snake venoms: their biochemical and biological activities. Pharmacol Ther 48:223–236

    Article  CAS  PubMed  Google Scholar 

  • Mohan SK, Yu C (2007) Structure function relationships of cobrotoxin from naja naja atra. Toxin Rev 26:99–122

    Article  CAS  Google Scholar 

  • Montecucco C, Gutierrez JM, Lomonte B (2008) Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci 65:2897–2912

    Article  CAS  PubMed  Google Scholar 

  • Neto HS, Marques MJ (2005) Microvessel damage by B. jararacussu snake venom: pathogenesis and influence on muscle regeneration. Toxicon 46:814–819

    Article  PubMed  CAS  Google Scholar 

  • Ownby CL, Fletcher JE, Colberg TR (1993) Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31:697–709

    Article  CAS  PubMed  Google Scholar 

  • Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutierrez J, Serrano AL, Brandan E, Munoz-Canoves P (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne muscular dystrophy. Skelet Muscle 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Pingel J, Nielsen MS, Lauridsen T, Rix K, Bech M, Alkjaer T, Andersen IT, Nielsen JB, Feidenhansl R (2017) Injection of high dose botulinum-toxin A leads to impaired skeletal muscle function and damage of the fibrilar and non-fibrilar structures. Sci Rep 7:14746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pitschmann V, Hon Z (2016) Military importance of natural toxins and their analogs. Molecules 21:556

    Article  PubMed Central  CAS  Google Scholar 

  • Plant DR, Colarossi FE, Lynch GS (2006) Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle Nerve 34:577–585

    Article  CAS  PubMed  Google Scholar 

  • Ranawaka UK, Lalloo DG, de Silva HJ (2013) Neurotoxicity in snakebite—the limits of our knowledge. PLoS Negl Trop Dis 7:e2302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues Ade C, Schmalbruch H (1995) Satellite cells and myonuclei in long-term denervated rat muscles. Anat Rec 243:430–437

    Article  PubMed  Google Scholar 

  • Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J Biol Chem 278:12601–12604

    Article  CAS  PubMed  Google Scholar 

  • Segawa M, Fukada S-i, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Si Hayashi, Miyagoe-Suzuki Y, Si Takeda, Tsujikawa K, Yamamoto H (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314:3232–3244

    Article  CAS  PubMed  Google Scholar 

  • Utkin YN (2015) Animal venom studies: current benefits and future developments. World J Biol Chem 6:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM (2017) Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 18:436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warrell DA (2013) Animals hazardous to humans. In: Magill AJ, Hill DR, Solomon T, Ryan ET (eds) Hunter’s tropical medicine and emerging infectious disease, 9th edn. Saunders, London, pp 938–965

    Chapter  Google Scholar 

  • Westerlund B, Nordlund P, Uhlin U, Eaker D, Eklund H (1992) The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 Å resolution. FEBS Lett 301:159–164

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Chawla A, Spinner RJ, Yu C, Yaszemski MJ, Windebank AJ, Wang H (2014) Key changes in denervated muscles and their impact on regeneration and reinnervation. Neural Regen Res 9:1796–1809

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836

    Article  CAS  PubMed  Google Scholar 

  • Yang CC (1999) Cobrotoxin: structure and function. J Nat Toxins 8:221–233

    CAS  PubMed  Google Scholar 

  • Yee JSP, Nanling G, Afifiyan F, Donghui M, Siew Lay P, Armugam A, Jeyaseelan K (2004) Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochimie 86:137–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. A. Mahdy.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Ethical approval

The authors declare that this paper complies with ethical standards in publishing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdy, M.A.A. Biotoxins in muscle regeneration research. J Muscle Res Cell Motil 40, 291–297 (2019). https://doi.org/10.1007/s10974-019-09548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-019-09548-4

Keywords

Navigation