Skip to main content
Log in

Loop 2 of myosin is a force-dependent inhibitor of the rigor bond

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Myosin’s actin-binding loop (loop 2) carries a charge opposite to that of its binding site on actin and is thought to play an important role in ionic interactions between the two molecules during the initial binding step. However, no subsequent role has been identified for loop 2 in actin-myosin binding. We used an optical trap to measure bond formation and bond rupture between actin and rigor heavy meromyosin when loaded perpendicular to the filament axis. We studied HMM with intact or proteolytically cleaved loop 2 at low and physiologic ionic strength. Here we show that the presence of intact loop 2 allows actomyosin bonds to form quickly and that they do so in a short-lived bound state. Increasing tensile load causes the transition to a long-lived state—the distinguishing behavior of a catch bond. When loop 2 was cleaved catch bond behavior was abrogated leaving only a long-lived state. These data suggest that in addition to its role in locating binding sites on actin, loop 2 is also a force-dependent inhibitor of the long-lived actomyosin complex. This may be important for reducing the duty ratio and increasing the shortening velocity of actomyosin at low forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allersma MW, Gittes F, deCastro MJ, Stewart RJ, Schmidt CF (1998) Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J 74:1074–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bálint M, Sréter FA, Wolf I, Nagy B, Gergely J (1975) The substructure of heavy meromyosin. The effect of Ca2+ and Mg2+ on the tryptic fragmentation of heavy meromyosin. J Biol Chem 250:6168–6177

    PubMed  Google Scholar 

  • Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:327–338

    Article  CAS  PubMed  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  PubMed  Google Scholar 

  • Bobkov AA, Bobkova EA, Lin SH, Reisler E (1996) The role of surface loops (residues 204–216 and 627–646) in the motor function of the myosin head. Proc Natl Acad Sci USA 93:2285–2289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botts J, Muhlrad A, Takashi R, Morales MF (1982) Effects of tryptic digestion on myosin subfragment- 1 and its actin-activated ATPase. Biochemistry 21:6903–6905

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Evans EA, McEver RP, Zhu C (2008) Monitoring receptor-ligand interactions between surfaces by thermal fluctuations. Biophys J 94:694–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coates JH, Criddle AH, Geeves MA (1985) Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment 1 from rabbit skeletal muscle. Evidence for two states of acto-subfragment 1. Biochem J 232:351–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dupuis D, Guilford William H, Wu J, Warshaw D (1997) Actin filament mechanics in the laser trap. J Muscle Res Cell Motil 18:17–30

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Moos C (1968) Adenosinetriphosphatase activity of acto-heavy meromyosin. Kinetic analysis of actin activation. Biochemistry 7:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Katopodis AG, Kolbinger F, Anselmetti D (1998) Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. PNAS 95:12283–12288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geeves MA, Conibear PB (1995) The role of three-state docking of myosin S1 with actin in force generation. Biophys J 68:194S–201S

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geeves MA, Goody RS, Gutfreund H (1984) Kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle. J Muscle Res Cell Motil 5:351–361

    Article  CAS  PubMed  Google Scholar 

  • Goodson HV, Warrick HM, Spudich JA (1999) Specialized conservation of surface loops of myosin: evidence that loops are involved in determining functional characteristics. J Molec Biol 287:173–185

    Article  CAS  PubMed  Google Scholar 

  • Gränicher D, Portzehl H (1964) The influence of magnesium and calcium pyrophosphate chelates, of free magnesium ions, free calcium ions, and free pyrophosphate ions on the dissociation of actomyosin in solution. Biochimica et Biophysica Acta 86:567–578

    Article  Google Scholar 

  • Guilford WH, Dupuis DE, Kennedy G, Wu J, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72:1006–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guilford WH, Tournas JA, Dascalu D, Watson DS (2004) Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware. Anal Biochem 326:153–166

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Guilford WH (2004) The tail of myosin reduces actin filament velocity in the in vitro motility assay. Cell Motil Cytoskelet 59:264–272

    Article  CAS  Google Scholar 

  • Guo B, Guilford WH (2006) Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc Natl Acad Sci 103:9844–9849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hooft AM, Maki EJ, Cox KK, Baker JE (2007) An accelerated state of myosin-based actin motility†. Biochemistry 46:3513–3520

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Adachi T (2013) Role of the actin-myosin catch bond on actomyosin aggregate formation. Cell Mol Bioeng 6:3–12

    Article  CAS  Google Scholar 

  • Kong F, García AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korn ED (2000) Coevolution of head, neck, and tail domains of myosin heavy chains. PNAS 97:12559–12564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQP, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. In: Vallee RB (ed) Methods in enzymology. Academic Press, New York, pp 399–416

    Google Scholar 

  • Liu Y, Scolari M, Im W, Woo H (2006) Protein–protein interactions in actin–myosin binding and structural effects of R405Q mutation: a molecular dynamics study. Proteins: Structure. Proteins Struct Function Bioinform 64:156–166

    Article  CAS  Google Scholar 

  • Lorenz M, Holmes KC (2010) The actin-myosin interface. Proc Natl Acad Sci USA 107:12529–12534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    Article  CAS  PubMed  Google Scholar 

  • Marston SB (1982) The rates of formation and dissociation of actin-myosin complexes. Effects of solvent, temperature, nucleotide binding and head–head interactions. Biochem J 203:453–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mocz G, Szilagyi L, Chen LuR, Fabian F, Balint M, Gergely J (1984) Effect of nucleotides, divalent cations and temperature on the tryptic susceptibility of myosin subfragment 1. Eur J Biochem 145:221–229

    Article  CAS  PubMed  Google Scholar 

  • Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995) Movement and force produced by a single myosin head. Nature 378:209–212

    Article  CAS  PubMed  Google Scholar 

  • Mornet D, Bertrand R, Pantel P, Audemard E, Kassab R (1981) Proteolytic approach to structure and function of actin recognition site in myosin heads. Biochemistry 20:2110–2120

    Article  CAS  PubMed  Google Scholar 

  • Murphy CT, Spudich JA (2000) Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 21:139–151

    Article  CAS  PubMed  Google Scholar 

  • Pardee J, Spudich J (1982) Purification of muscle actin. Methods Enzymol 85:164–181

    Article  CAS  PubMed  Google Scholar 

  • Pereverzev YV, Prezhdo OV, Forero M, Sokurenko EV, Thomas WE (2005) The two-pathway model for the catch-slip transition in biological adhesion. Biophys J 89:1446–1454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phan UT, Waldron TT, Springer TA (2006) Remodeling of the lectin–EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat Immunol 7:883–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prezhdo OV, Pereverzev YV (2009) Theoretical aspects of the biological catch bond. Acc Chem Res 42:693–703

    Article  CAS  PubMed  Google Scholar 

  • Rao VS, Marongelli EN, Guilford WH (2009) Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. Cell Motil Cytoskelet 66:10–23

    Article  CAS  Google Scholar 

  • Rao VS, Clobes AM, Guilford WH (2011) Force spectroscopy reveals multiple closed states of the muscle thin filament. J Biol Chem 286:24135–24141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993a) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  • Rinko LJ, Lawrence MB, Guilford WH (2004) The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1. Biophys J 86:544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross SM (2009) Introduction to probability and statistics for engineers and scientists. Academic Press, New York

    Google Scholar 

  • Sarangapani KK, Yago T, Klopocki AG, Lawrence MB, Fieger CB, Rosen SD, McEver RP, Zhu C (2004) Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J Biol Chem 279:2291–2298

    Article  CAS  PubMed  Google Scholar 

  • Snook JH, Guilford WH (2010) The effects of load on e-selectin bond rupture and bond formation. Cell Molec Bioeng 3:128–138

    Article  CAS  Google Scholar 

  • Snook JH, Guilford WH (2012) A high-throughput technique reveals the load- and site density-dependent kinetics of E-selectin. Cell Mol Bioeng 5:493–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snook JH, Li J, Helmke BP, Guilford WH (2008) Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic Biol Med 44:14–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutoh K (1982) An actin-binding site on the 20 K fragment of myosin subfragment 1. Biochemistry 21:4800–4804

    Article  CAS  PubMed  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90:1295–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takiguchi K, Hayashi H, Kurimoto E, Higasshi-Fujime S (1990) In vitro motility of skeletal muscle myosin and its proteolytic fragments. J Biochem 107:671–679

    CAS  PubMed  Google Scholar 

  • Taylor EW (1991) Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J Biol Chem 266:294–302

    CAS  PubMed  Google Scholar 

  • Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V (2006) Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys J 90:753–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas WE, Vogel V, Sokurenko E (2008) Biophysics of catch bonds. Annu Rev Biophys 37:399–416

    Article  CAS  PubMed  Google Scholar 

  • Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM, Warshaw DM, Lowey S (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci USA 96:4402–4407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uyeda TQP, Warrick HM, Kron SJ, Spudich JA (1991) Quantized velocities at low myosin densities in an in vitro motility. Nature 352:307–311

    Article  CAS  PubMed  Google Scholar 

  • Warshaw DM, Desrosiers JM, Work SS, Trybus KM (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 111:453–463

    Article  CAS  PubMed  Google Scholar 

  • White HD, Taylor EW (1976) Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry 15:5818–5826

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the American Heart Association (11GRNT7400064), and the Molecular Biophysics Training Grant (T32GM080186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Guilford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clobes, A.M., Guilford, W.H. Loop 2 of myosin is a force-dependent inhibitor of the rigor bond. J Muscle Res Cell Motil 35, 143–152 (2014). https://doi.org/10.1007/s10974-014-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-014-9375-z

Keywords

Navigation