Skip to main content
Log in

Gestalt-Binding of tropomyosin on actin during thin filament activation

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Our thesis is that thin filament function can only be fully understood and muscle regulation then elucidated if atomic structures of the thin filament are available to reveal the positions of tropomyosin on actin in all physiological states. After all, it is tropomyosin influenced by troponin that regulates myosin-crossbridge cycling on actin and therefore controls contraction in all muscles. In addition, we maintain that a complete appreciation of thin filament activation also requires that the mechanical properties of tropomyosin itself are recognized and then related to the effect of myosin-association on actin. Taking the Gestalt-binding of tropomyosin into account, coupled with our electron microscopy structures and computational chemistry, we propose a comprehensive mechanism for tropomyosin regulatory movement over the actin filament surface that explains the cooperative muscle activation process. In fact, well-known point mutations of critical amino acids on the actin–tropomyosin binding interface disrupt Gestalt-binding and are associated with a number of inherited myopathies. Moreover, dysregulation of tropomyosin may also be a factor that interferes with the gatekeeping operation of non-muscle tropomyosin in the controlling interactions of a wide variety of cellular actin-binding proteins. The clinical relevance of Gestalt-binding is discussed in articles by the Marston and the Gunning groups in this special journal issue devoted to the impact of tropomyosin on biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barua B, Winkelmann DA, White HD, Hitchcock-DeGregori SE (2012) Regulation of actin–myosin interaction by conserved periodic sites of tropomyosin. Proc Natl Acad Sci USA 109:18425–18430

    Article  PubMed  CAS  Google Scholar 

  • Barua B, Fagnant PM, Winkelmann DA, Trybus KM, Hitchcock-Degregori SE (2013) A periodic pattern of evolutionarily-conserved basic and acidic residues constitutes the binding interface of actin–tropomyosin. J Biol Chem. doi:10.1074/jbc.M113.451161

    Google Scholar 

  • Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin–tropomyosin–myosin complex. Cell 150:327–338

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Cohen C (2005) Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. Adv Protein Chem 71:121–159

    PubMed  CAS  Google Scholar 

  • Craig R, Lehman W (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Dominguez R (2011) Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophys J 100:797–798

    Article  PubMed  CAS  Google Scholar 

  • Eaton BL, Kominz DR, Eisenberg E (1975) Correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effects of Mg2+, KCl, troponin I, and troponin C. Biochemistry 14:2718–2725

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Lehrer SS (2002) Modeling thin filament cooperativity. Biophys J 82:1677–1681

    Article  PubMed  CAS  Google Scholar 

  • Geeves M, Griffiths H, Mijailovich S, Smith D (2011) Cooperative Ca2+-dependent regulation of the rate of myosin binding to actin: solution data and the tropomyosin chain model. Biophys J 100:2679–2687

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  • Hanson J, Lowy J (1964) The structure of actin filaments and the origin of the axial periodicity in the I-substance of vertebrate striated muscle. Proc Royal Soc Lond B 160:449–460

    Article  CAS  Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp Quant Biol 37:341–352

    Article  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1972) Structural changes in actin and myosin-containing filaments during contraction. Cold Spring Harbor Symp Quant Biol 37:361–376

    Article  Google Scholar 

  • Im W, Lee MS, Brooks CL (2003) Generalized born model with a simple smoothing function. J Comput Chem 24:1691–1702

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Craig R (2008) Tropomyosin and the steric mechanism of muscle regulation. Adv Exp Med Biol 644:95–109

    PubMed  CAS  Google Scholar 

  • Lehman W, Craig R, Vibert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368:65–67

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302:593–606

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388:673–681

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS, Geeves MA (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Holmes KC, Lehman W, Jung H-S, Fischer S (2010a) The shape and flexibility of tropomyosin coiled-coils: implications for actin filament assembly and regulation. J Mol Biol 395:327–399

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Lehman W, Fischer S (2010b) The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil. J Struct Biol 107:313–318

    Article  Google Scholar 

  • Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Li XE, Suphamungmee W, Janco M, Geeves MA, Marston SB, Fischer S, Lehman W (2012) The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy. Biochem Biophys Res Commun 424:493–496

    Article  PubMed  CAS  Google Scholar 

  • Loong CK, Badr MA, Chase PB (2012) Tropomyosin flexural rigidity and single Ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy. Front Physiol 3(80):1–10

    Google Scholar 

  • Ly S, Lehrer SS (2012) Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 51:6413–6420

    Article  PubMed  CAS  Google Scholar 

  • MacKerell AD, Bashford D, Dunbrack RL, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:400–1415

    Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment-1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  PubMed  CAS  Google Scholar 

  • Mijailovich SM, Li X, Griffiths RH, Geeves MA (2010) Resolution and uniqueness of estimated parameters of a model of thin filament regulation in solution. Comput Biol Chem 34:19–33

    Article  PubMed  CAS  Google Scholar 

  • Mijailovich SM, Kayser-Herold O, Li X, Griffiths H, Geeves MA (2012) Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain. Eur Biophys J 41:1015–1032

    Article  PubMed  CAS  Google Scholar 

  • Mudalige WA, Lehrer SS (2010) What region of tropomyosin interacts with the N-terminal half of troponin T? Biophys J 98:351a

    Article  Google Scholar 

  • Mudalige WA, Tao TC, Lehrer SS (2009) Ca2+-dependent photocrosslinking of tropomyosin residue 146 to residues 157–163 in the C-terminal domain of troponin I in reconstituted skeletal muscle thin filaments. J Mol Biol 389:575–583

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Iwasa M, Aihara T, Maéda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445

    Article  PubMed  CAS  Google Scholar 

  • Orzechowski M, Raunser S, Fischer S, Lehman W (2012) Tropomyosin movement on F-actin analyzed by energy landscape determination. Biophys J 102:17a

    Google Scholar 

  • Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    Article  PubMed  CAS  Google Scholar 

  • Perz-Edwards RJ, Irving TC, Baumann BA, Gore D, Hutchinson DC et al (2011) X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc Natl Acad Sci USA 108:120–125

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Tobacman LS, Lehman W, Holmes KC (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Hitchcock-DeGregori SE (2003) Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding. Biochemistry 42:14114–14121

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Hitchcock-DeGregori SE (2006) Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Smith DA, Geeves MA (2003) Cooperative regulation of myosin-actin interactions by a continuous flexible chain II: actin–tropomyosin–troponin and regulation by calcium. Biophys J 84:3168–3180

    Article  PubMed  CAS  Google Scholar 

  • Smith DA, Maytum R, Geeves MA (2003) Cooperative regulation of myosin–actin interactions by a continuous flexible chain I: actin–tropomyosin systems. Biophys J 84:3155–3167

    Article  PubMed  CAS  Google Scholar 

  • Sousa D, Cammarato A, Jang K, Graceffa P, Tobacman LS, Li XE, Lehman W (2010) Electron microscopy and persistence length analysis of semi-rigid smooth muscle tropomyosin strands. Biophys J 99:1–7

    Article  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  PubMed  CAS  Google Scholar 

  • Wegner A (1980) The interaction of alpha, alpha- and alpha, beta-tropomyosin with actin filaments. FEBS Lett 119:245–248

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R, Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryo-electron microscopy. J Mol Biol 77:985–992

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (R37-HL036153 to W.L. and P01-HL086655 to W.L. and Kathleen G. Morgan), the Deutsche Forschungsgemeinschaft (RA1781/1-1) and the Max Planck Gesellschaft (to S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, W., Orzechowski, M., Li, X.E. et al. Gestalt-Binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil 34, 155–163 (2013). https://doi.org/10.1007/s10974-013-9342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9342-0

Keywords

Navigation