Skip to main content
Log in

Tuning the structural coupling between the transmembrane and cytoplasmic domains of phospholamban to control sarcoplasmic reticulum Ca2+-ATPase (SERCA) function

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Phospholamban (PLN) is the endogenous inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), the integral membrane enzyme responsible for 70 % of the removal of Ca2+ from the cytosol, inducing cardiac muscle relaxation in humans. Dysfunctions in SERCA:PLN interactions have been implicated as having a critical role in cardiac disease, and targeting Ca2+ transport has been demonstrated to be a promising avenue in treating conditions of heart failure. Here, we designed a series of new mutants able to tune SERCA function, targeting the loop sequence that connects the transmembrane and cytoplasmic helices of PLN. We found that a variable degree of loss of inhibition mutants is attainable by engineering glycine mutations along PLN’s loop domain. Remarkably, a double glycine mutation results in a complete loss-of-function mutant, fully mimicking the phosphorylated state of PLN. Using nuclear magnetic resonance spectroscopy, we rationalized the effects of these mutations in terms of entropic control on PLN function, whose inhibitory function can be modulated by increasing its conformational dynamics. However, if PLN mutations go past a threshold set by the phosphorylated state, they break the structural coupling between the transmembrane and cytoplasmic domains, resulting in a species that behaves as the inhibitory transmembrane domain alone. These studies provide new potential candidates for gene therapy to reverse the effects of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PLN:

Phospholamban

SERCA:

Sarcoplasmic reticulum Ca2+-ATPase

SR:

Sarcoplasmic reticulum

LOF:

Loss-of-function

DPC:

Dodecylphosphocholine

NMR:

Nuclear magnetic resonance

PKA:

Protein kinase A

References

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  PubMed  CAS  Google Scholar 

  • Buck B, Zamoon J, Kirby TL, DeSilva TM, Karim C, Thomas D, Veglia G (2003) Overexpression, purification, and characterization of recombinant Ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30:253–261

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Lester JW, Young KB, Luo W, Zhai J, Kranias EG (2000) A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta-agonists. J Biol Chem 275:38938–38943

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1978) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci 307:491–522

    Article  PubMed  CAS  Google Scholar 

  • Farrow N, Muhandiram R, Singer A, Pascal S, Kay C, Gish G, Shoelson S, Pawson T, Forman-Kay J, Kay L (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15 N NMR relaxation. Biochemistry 33:5984–6003

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson M, Traaseth NJ, Karim CB, Lockamy EL, Thomas DD, Veglia G (2011a) Lipid-mediated folding/unfolding of phospholamban as a regulatory mechanism for the sarcoplasmic reticulum Ca(2+)-ATPase. J Mol Biol 408(4):755–765

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson M, Traaseth NJ, Veglia G (2011b) Activating and deactivating roles of lipid bilayers on the Ca(2+)-ATPase/phospholamban complex. Biochemistry 50(47):10367–10374

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson M, Traaseth NT, Veglia G (2011c) Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim Biophys Acta 1818:146–153

    Google Scholar 

  • Ha KN, Traaseth NJ, Verardi R, Zamoon J, Cembran A, Karim CB, Thomas DD, Veglia G (2007) Controlling the inhibition of the sarcoplasmic Ca2+-ATPase by tuning phospholamban structural dynamics. J Biol Chem 282:37205–37214

    Article  PubMed  CAS  Google Scholar 

  • Ha KN, Masterson LR, Hou Z, Verardi R, Walsh N, Veglia G, Robia SL (2011) Lethal arg9cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc Natl Acad Sci USA 108:2735–2740

    Article  PubMed  CAS  Google Scholar 

  • Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB, Dorn GW, MacLennan DH, Kremastinos DT, Kranias EG (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin Invest 111:869–876

    PubMed  CAS  Google Scholar 

  • Haghighi K, Gregory KN, Kranias EG (2004) Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem Biophys Res Commun 322:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA, Fan GC, Tsiapras D, Parekh RR, Dorn GW, MacLennan DH, Kremastinos DT, Kranias EG (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103:1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y, Iwatate M, Li M, Wang L, Wilson JM, Wang Y, Ross J, Chien KR (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8:864–871

    PubMed  CAS  Google Scholar 

  • Hoshijima M, Knoll R, Pashmforoush M, Chien KR (2006) Reversal of calcium cycling defects in advanced heart failure toward molecular therapy. J Am Coll Cardiol 48:A15–A23

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA (2004) Using NMRview to visualize and analyze the NMR spectra of macromolecules protein NMR techniques. Methods Mol Biol 278:313–352

    PubMed  CAS  Google Scholar 

  • Karim CB, Marquardt CG, Stamm JD, Barany G, Thomas DD (2000) Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase. Biochemistry 39:10892–10897

    Article  PubMed  CAS  Google Scholar 

  • Karim CB, Kirby TL, Zhang Z, Nesmelov Y, Thomas DD (2004) Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proc Natl Acad Sci USA 101:14437–14442

    Article  PubMed  CAS  Google Scholar 

  • Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R, Mariani JA, Pepe S, Chien KR, Power JM (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50:253–260

    Article  PubMed  CAS  Google Scholar 

  • Kelly EM, Hou Z, Bossuyt J, Bers DM, Robia SL (2008) Phospholamban oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase binding measured by fluorescence resonance energy transfer in living cells. J Biol Chem 283:12202–12211

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Asahi M, Kurzydlowski K, Tada M, MacLennan DH (1998) Phospholamban domain Ib mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. J Biol Chem 273:14238–14241

    Article  PubMed  CAS  Google Scholar 

  • Li J, Boschek CB, Xiong Y, Sacksteder CA, Squier TC, Bigelow DJ (2005) Essential role for Pro21 in phospholamban for optimal inhibition of the Ca-ATPase. Biochemistry 44:16181–16191

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Kimura Y, Toyofuku T (1998) Sites of regulatory interaction between calcium ATPases and phospholamban. Ann N Y Acad Sci 853:31–42

    Article  PubMed  CAS  Google Scholar 

  • Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G (2008) Allosteric cooperativity in protein kinase A. Proc Natl Acad Sci USA 105:506–511

    Article  PubMed  CAS  Google Scholar 

  • Masterson LR, Yu T, Shi L, Wang Y, Gustavsson M, Mueller MM, Veglia G (2011) cAMP-dependent protein kinase A selects the excited state of the membrane substrate phospholamban. J Mol Biol 412:155–164

    Article  PubMed  CAS  Google Scholar 

  • Medeiros A, Biagi DG, Sobreira TJ, de Oliveira PS, Negrao CE, Mansur AJ, Krieger JE, Brum PC, Pereira AC (2011) mutations in the human phospholamban gene in patients with heart failure. Am Heart J 162(6):1088–1095.e1

    Google Scholar 

  • Metcalfe EE, Zamoon J, Thomas DD, Veglia G (2004) (1)H/(15)N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamban reconstituted in dodecylphosphocholine micelles. Biophys J 87:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe EE, Traaseth NJ, Veglia G (2005) Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Biochemistry 44:4386–4396

    Article  PubMed  CAS  Google Scholar 

  • Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Mol Biol 339:204–238

    CAS  Google Scholar 

  • Reddy LG, Cornea RL, Winters DL, McKenna E, Thomas DD (2003) Defining the molecular components of calcium transport regulation in a reconstituted membrane system. Biochemistry 42:4585–4592

    Article  PubMed  CAS  Google Scholar 

  • Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, MacLennan DH, Seidman JG, Seidman CE (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam M, Gao S, Hong C, Fefelova N, Nowycky MC, Xie LH, Periasamy M, Babu GJ (2011) Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovasc Res 89:353–361

    Article  PubMed  CAS  Google Scholar 

  • Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78:921–947

    PubMed  CAS  Google Scholar 

  • Simmerman HK, Kobayashi YM, Autry JM, Jones LR (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. J Biol Chem 271:5941–5946

    Article  PubMed  CAS  Google Scholar 

  • Tilemann L, Ishikawa K, Weber T, Hajjar R (2012) Gene therapy for heart failure. Circ Res 110(5):777–793

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Traaseth NJ, Veglia G (2010) Probing excited states and activation energy for the integral membrane protein phospholamban by NMR CPMG relaxation dispersion experiments. Biochem Biophys Acta 1798:77–81

    Article  PubMed  CAS  Google Scholar 

  • Traaseth NJ, Ha KN, Verardi R, Shi L, Buffy JJ, Masterson LR, Veglia G (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase. Biochemistry 47:3–13

    Article  PubMed  CAS  Google Scholar 

  • Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106:10165–10170

    Article  PubMed  CAS  Google Scholar 

  • Trieber CA, Afara M, Young HS (2009) Effects of phospholamban transmembrane mutants on the calcium affinity, maximal activity, and cooperativity of the sarcoplasmic reticulum calcium pump. Biochemistry 48(39):9287–9296

    Article  PubMed  CAS  Google Scholar 

  • Veglia G, Ha KN, Shi L, Verardi R, Traaseth NJ (2010) What can we learn from a small regulatory membrane protein? Methods Mol Biol 654:303–319

    Article  PubMed  CAS  Google Scholar 

  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106

    Article  PubMed  CAS  Google Scholar 

  • Zamoon J, Mascioni A, Thomas DD, Veglia G (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85:2589–2598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to G. V. from the National Institutes of Health (GM64742) and predoctoral fellowships to K. N. H. from the National Heart Lung and Blood Institute (5F31HL095361) and M. G. from the American Heart Association (10PRE3860050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia.

Additional information

This article is dedicated to the late Michael and Kate Bárány, in tribute to their outstanding contributions to understanding the biochemistry and biophysics of muscle proteins. I had the privilege to share my ideas on phospholamban with Michael and I continue to enjoy my friendship with his son George, my colleague at the University of Minnesota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, K.N., Gustavsson, M. & Veglia, G. Tuning the structural coupling between the transmembrane and cytoplasmic domains of phospholamban to control sarcoplasmic reticulum Ca2+-ATPase (SERCA) function. J Muscle Res Cell Motil 33, 485–492 (2012). https://doi.org/10.1007/s10974-012-9319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-012-9319-4

Keywords

Navigation