Skip to main content
Log in

Ryanodine modification of RyR1 retrogradely affects L-type Ca2+ channel gating in skeletal muscle

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

In skeletal muscle, there is bidirectional signalling between the L-type Ca2+ channel (1,4-dihydropyridine receptor; DHPR) and the type 1 ryanodine-sensitive Ca2+ release channel (RyR1) of the sarcoplasmic reticulum (SR). In the case of “orthograde signalling” (i.e., excitation-contraction coupling), the conformation of RyR1 is controlled by depolarization-induced conformational changes of the DHPR resulting in Ca2+ release from the SR. “Retrograde coupling” is manifested as enhanced L-type current. The nature of this retrograde signal, and its dependence on RyR1 conformation, are poorly understood. Here, we have examined L-type currents in normal myotubes after an exposure to ryanodine (200 μM, 1 h at 37°C) sufficient to lock RyR1 in a non-conducting, inactivated, conformational state. This treatment caused an increase in L-type current at less depolarized test potentials in comparison to myotubes similarly exposed to vehicle as a result of a ~5 mV hyperpolarizing shift in the voltage-dependence of activation. Charge movements of ryanodine-treated myotubes were also shifted to more hyperpolarizing potentials (~13 mV) relative to vehicle-treated myotubes. Enhancement of the L-type current by ryanodine was absent in dyspedic (RyR1 null) myotubes, indicating that ryanodine does not act directly on the DHPR. Our findings indicate that in retrograde signaling, the functional state of RyR1 influences conformational changes of the DHPR involved in activation of L-type current. This raises the possibility that physiological regulators of the conformational state of RyR1 (e.g., Ca2+, CaM, CaMK, redox potential) may also affect DHPR gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DHPR:

1,4-dihydropyridine receptor

EC:

Excitation–contraction

RyR:

Ryanodine-sensitive intracellular Ca2+ release channel

SR:

Sarcoplasmic reticulum

References

  • Adams BA, Tanabe T, Mikami A, Numa S, Beam KG (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346:569–572

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CM, Bezanilla FM, Horowicz P (1972) Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N, N′-tetraacetic acid. Biochim Biophys Acta 267:605–608

    Article  CAS  PubMed  Google Scholar 

  • Avila G, Dirksen RT (2000) Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J Gen Physiol 115:467–480

    Article  CAS  PubMed  Google Scholar 

  • Balog E, Gallant E (1999) Modulation of the sarcolemmal L-type current by alteration in SR Ca2+ release. Am J Physiol 276:C128–C135

    CAS  PubMed  Google Scholar 

  • Bannister RA, Colecraft HM, Beam KG (2008) Rem inhibits excitation–contraction coupling in skeletal muscle by down-regulating the number of functional L-type Ca2+ channels. Biophys J 94:2631–2638

    Article  CAS  PubMed  Google Scholar 

  • Bannister RA, Papadopoulos S, Haarmann CS, Beam KG (2009) Effects of inserting fluorescent proteins into the α1S II-III loop: insights into excitation–contraction coupling. J Gen Physiol 134:35–51

    Article  CAS  PubMed  Google Scholar 

  • Beam KG, Franzini-Armstrong C (1997) Functional and structural approaches to the study of excitation–contraction coupling. Methods Cell Biol 52:283–306

    Article  CAS  PubMed  Google Scholar 

  • Beam KG, Horowicz P (2004) Excitation–contraction coupling in skeletal muscle. In: Engel AG, Franzini-Armstrong C (eds) Myology, 3rd edn. McGraw-Hill, New York, pp 257–280

    Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Buck E, Zimányi I, Abramson JJ, Pessah IN (1992) Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J Biol Chem 267:23560–23567

    CAS  PubMed  Google Scholar 

  • Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722

    Article  CAS  PubMed  Google Scholar 

  • Csernoch L, Pizarro G, Uribe I, Rodríguez M, Ríos E (1991) Interfering with calcium release supresses Iγ, the “hump” component of intramembrane charge movement in skeletal muscle. J Gen Physiol 97:845–884

    Article  CAS  PubMed  Google Scholar 

  • De Crescenzo V, Fogarty KE, Zhuge R, Tuft RA, Lifshitz LM, Carmichael J, Bellve KD, Baker SP, Zissimopoulos S, Lai FA, Lemos JR, Walsh JV (2006) Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. J Neurosci 26:7565–7574

    Article  PubMed  Google Scholar 

  • Dirksen RT, Beam KG (1999) Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation–contraction coupling. J Gen Physiol 114:393–403

    Article  CAS  PubMed  Google Scholar 

  • Fryer MW, Lamb GD, Neering JR (1989) The action of ryanodine on rat fast and slow intact skeletal muscle. J Physiol 414:399–413

    CAS  PubMed  Google Scholar 

  • García J, Avila-Sakar AJ, Stefani E (1991a) Differential effects of ryanodine and tetracaine on charge movements and calcium transients in frog skeletal muscle. J Physiol 440:403–417

    PubMed  Google Scholar 

  • García J, Pizarro G, Ríos E, Stefani E (1991b) Effect of the calcium buffer EGTA on the “hump” component of charge movement in skeletal muscle. J Gen Physiol 97:885–896

    Article  PubMed  Google Scholar 

  • Gonzalez A, Caputo C (1996) Ryanodine interferes with charge movement repriming in amphibian skeletal muscle. Biophys J 70:376–382

    Article  CAS  PubMed  Google Scholar 

  • Grabner M, Dirksen RT, Suda N, Beam KG (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J Biol Chem 274:21913–21919

    Article  CAS  PubMed  Google Scholar 

  • Huang CL-H (1996) The influence of caffeine on intramembrane charge movements in intact frog striated muscle. J Physiol 512:707–721

    Article  Google Scholar 

  • Huang CL-H (1998) Kinetic isoforms of intramembrane charge in intact amphibian striated muscle. J Gen Physiol 107:515–534

    Article  Google Scholar 

  • Kim S, Yun HM, Baik JH, Chung KC, Nah SY, Rhim H (2007) Functional interaction of neuronal CaV1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus. J Biol Chem 282:32877–32889

    Article  CAS  PubMed  Google Scholar 

  • Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor α1S II-III loop for skeletal-type excitation–contraction coupling. J Biol Chem 279:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Meissner G (2002) Regulation of mammalian ryanodine receptors. Front Biosci 7:d2072–d2080

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Ogura T, Protasi F, Franzini-Armstrong C, Allen PD, Beam KG (1997) Functional non-equality of the cardiac and skeletal muscle ryanodine receptors. Proc Natl Acad Sci USA 94:1019–1022

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Sekiguchi N, Rando TA, Allen PD, Beam KG (1998a) Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem 273:13403–13406

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Tanabe T, Konno T, Adams BA, Beam KG (1998b) Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation–contraction coupling. J Biol Chem 273:24983–24986

    Article  CAS  PubMed  Google Scholar 

  • Ouardouz M, Nikolaeva MA, Coderre E, Zamponi GW, McRory JE, Trapp BD, Yin X, Wang W, Woulfe J, Stys PK (2003) Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40:53–63

    Article  CAS  PubMed  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752

    Article  CAS  PubMed  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with α1S-dihydropyridine receptors in skeletal muscle. Biophys J 83:3230–3244

    Article  CAS  PubMed  Google Scholar 

  • Ríos E, Brum G (1987) Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature 325:717–720

    Article  PubMed  Google Scholar 

  • Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368

    CAS  PubMed  Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage dependence charge movement in skeletal muscle: a possible step in excitation–contraction coupling. Nature 242:244–246

    Article  CAS  PubMed  Google Scholar 

  • Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF (2006) Bi-directional signaling between calcium channels of skeletal muscle requires, multiple, direct and indirect interactions. Proc Natl Acad Sci USA 103:19760–19765

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Imagawa T, Ma J, Fill M, Campbell KP, Coronado R (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of the sarcoplasmic reticulum. J Gen Physiol 92:1–26

    Article  CAS  PubMed  Google Scholar 

  • Squecco R, Bencina C, Piperio C, Francini F (2004) L-type Ca2+ channel and ryanodine receptor cross-talk in frog skeletal muscle. J Physiol 555:137–152

    Article  CAS  PubMed  Google Scholar 

  • Takekura H, Bennett L, Tanabe T, Beam KG, Franzini-Armstrong C (1994) Restoration of junctional tetrads in dysgenic myotubes by dihydropyridine receptor cDNA. Biophys J 67:793–803

    Article  CAS  PubMed  Google Scholar 

  • Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE (2004) Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of DHP-receptor arrays in skeletal muscle. Mol Biol Cell 15:5408–5419

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 346:567–569

    Article  CAS  PubMed  Google Scholar 

  • Wilkens CM, Kasielke N, Flucher BE, Beam KG, Grabner M (2001) Excitation–contraction coupling is unaffected by drastic alteration of the sequence surrounding residues L720–L764 of the α1S II-III loop. Proc Natl Acad Sci USA 98:5892–5897

    Article  CAS  PubMed  Google Scholar 

  • Zimányi I, Buck E, Abramson JJ, Mack MM, Pessah IN (1992) Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Mol Pharmacol 42:1049–1057

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. D.C. Sheridan and Mr. J.D. Ohrtman for insightful discussion. This work was supported in part by National Institutes of Health Grants NS24444 and AR44750 (to K.G.B.). R.A.B. was supported by a Developmental Grant from Muscular Dystrophy Association (MDA4155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Bannister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannister, R.A., Beam, K.G. Ryanodine modification of RyR1 retrogradely affects L-type Ca2+ channel gating in skeletal muscle. J Muscle Res Cell Motil 30, 217–223 (2009). https://doi.org/10.1007/s10974-009-9190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9190-0

Keywords

Navigation