Skip to main content
Log in

Experimental investigation on heat transfer and flow characteristics of TiO2-water nanofluid in a heavy vehicle radiator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental study is implemented in order to study the heat transfer and flow characteristics of an actual heavy vehicle radiator using nanofluid. Deionized water mixed with anatase TiO2 nanoparticles, called nanofluid, is utilized in a heavy vehicle radiator. By preparing nanofluid for different volume concentrations of TiO2 nanoparticles (0.025, 0.05, 0.1 and 0.2%), experiments are carried out for various inlet temperatures (40, 50, 60, 70 and 80 °C) and volume flow rates (5, 8 and 11 LPM) at constant air velocity. Results show that heat transfer rate, heat transfer coefficient and Nusselt number have their highest values at 0.05% volume concentration, 80 °C inlet temperature and 11 LPM volume flow rate. Moreover, the values of heat transfer rate, heat transfer coefficient and Nusselt number are 2549.12 W, 858.62 W m−2·K−1, and 70.33 respectively, for the given case. The maximum enhancement in heat transfer rate, heat transfer coefficient and Nusselt number is observed as 22.2, 48.2 and 48.1%, respectively, compared to pure water. Maximum pressure drop, about 2.7% in comparison with pure water, is obtained at 0.2% concentration at 40 °C inlet temperature and 11 LPM volume flow rate. In order to obtain information about the overall characteristic of the system, the performance coefficient is calculated, and the results show that the performance coefficient is above unity in the volume concentration range of 0.025–0.05% at each inlet temperature and flow rate used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A c :

Cross-sectional area, m2

A s :

Surface area, m2

c p :

Specific heat capacity, J kg−1·K−1

d :

Particle diameter, m

D h :

Hydraulic diameter, m

f :

Fanning friction factor

h :

Heat transfer coefficient, W m−2·K−1

k :

Thermal conductivity, W m−1·K−1

m :

Mass, kg

\(\dot{m}\) :

Mass flow rate, kg s−1

Nu:

Nusselt number

P :

Pressure, mbar

Pr:

Prandtl number

\(\dot{Q}\) :

Heat transfer rate, W

Re:

Reynolds number

T :

Temperature, K

µ :

Dynamic viscosity, kg m−1·s−1

ρ :

Density, kg m–3

φ :

Volume concentration

ɳ :

Performance coefficient

b:

Bulk

bf:

Base fluid

i:

İnlet

nf:

Nanofluid

o:

Outlet

p:

Particle

w:

Wall

NF:

Nanofluid

LPM:

Liter per minute

PEC:

Performance evaluation criteria

References

  1. Acharya N. On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: application to thermal energy storage. J Energy Storage. 2022;53: 105198.

    Article  Google Scholar 

  2. Acharya N. Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins. Int Commun Heat Mass Trans. 2022;133: 105980.

    Article  CAS  Google Scholar 

  3. Ali M, El-Leathy A, Al-Sofyany Z. The effect of nanofluid concentration on the cooling system of vehicles radiator. Adv Mech Eng. 2014;6: 962510.

    Article  Google Scholar 

  4. Kaladgi AR, et al. Integrated Taguchi-GRA-RSM optimization and ANN modelling of thermal performance of zinc oxide nanofluids in an automobile radiator. Case Stud Therm Eng. 2021;26: 101068.

    Article  Google Scholar 

  5. Aktas F, et al. Farklı oranlarda etanol ve metanol katkısının tam yük altında dört silindirli dizel bir motorun performans ve emisyon değerlerine olan etkilerinin sayısal olarak incelenmesi. Politeknik Dergisi. 2019;22(4):967–77.

    Google Scholar 

  6. Dinler N, Aktas F, Yucel N. Effects of channel design and temperature on the performance of the catalytic converter. Int J Green Energy. 2018;15(13):813–20.

    Article  Google Scholar 

  7. Acharya N, Chamkha AJ. On the magnetohydrodynamic Al2O3-water nanofluid flow through parallel fins enclosed inside a partially heated hexagonal cavity. Int Commun Heat Mass Trans. 2022;132: 105885.

    Article  CAS  Google Scholar 

  8. Çiftçi E, Sözen A. Nucleate pool boiling and condensation heat transfer characteristics of hexagonal boron nitride/dichloromethane nanofluid. Heat Trans Res. 2020;51(11):1043.

    Article  Google Scholar 

  9. Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Trans. 2015;89:620–6.

    Article  CAS  Google Scholar 

  10. Said Z, et al. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94.

    Article  CAS  Google Scholar 

  11. Ahmed SA, et al. Improving car radiator performance by using TiO2-water nanofluid. Eng Sci Technol Int J. 2018;21(5):996–1005.

    Google Scholar 

  12. Devireddy S, Mekala CSR, Veeredhi VR. Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Trans. 2016;78:121–6.

    Article  CAS  Google Scholar 

  13. Hussein AM, et al. Heat transfer augmentation of a car radiator using nanofluids. Heat Mass Trans. 2014;50(11):1553–61.

    Article  CAS  Google Scholar 

  14. Zhang J, et al. Experimental study of TiO2–water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube. Int J Heat Mass Trans. 2014;79:628–38.

    Article  CAS  Google Scholar 

  15. Zhong D, Zhong H, Wen T. Investigation on the thermal properties, heat transfer and flow performance of a highly self-dispersion TiO2 nanofluid in a multiport mini channel. Int Commun Heat Mass Trans. 2020;117: 104783.

    Article  CAS  Google Scholar 

  16. Ali HM, et al. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015;84:317–24.

    Article  CAS  Google Scholar 

  17. Zhou X, et al. Comparison of heat transfer performance of ZnO-PG, α-Al2O3-PG, and γ-Al2O3-PG nanofluids in car radiator. Nanomater Nanotechnol. 2019;9:1847980419876465.

    Article  CAS  Google Scholar 

  18. Qasim M, et al. Heat transfer enhancement of an automobile engine radiator using ZnO water base nanofluids. J Therm Sci. 2020;29(4):1010–24.

    Article  CAS  Google Scholar 

  19. Tafakhori M, et al. Assessment of Fe3O4–water nanofluid for enhancing laminar convective heat transfer in a car radiator. J Therm Anal Calorim. 2021;146(2):841–53.

    Article  CAS  Google Scholar 

  20. Braun JH, Baidins A, Marganski RE. TiO2 pigment technology: a review. Progr Org Coat. 1992;20(2):105–38.

    Article  CAS  Google Scholar 

  21. Khan A, et al. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138(5):3007–21.

    Article  CAS  Google Scholar 

  22. Elsaid AM. Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. Int Commun Heat Mass Trans. 2019;108: 104263.

    Article  CAS  Google Scholar 

  23. Subhedar DG, Ramani BM, Gupta A. Experimental investigation of heat transfer potential of Al2O3/water-mono ethylene glycol nanofluids as a car radiator coolant. Case Stud Therm Eng. 2018;11:26–34.

    Article  Google Scholar 

  24. Ali HM, et al. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. Therm Sci. 2015;19(6):2039–48.

    Article  Google Scholar 

  25. Peyghambarzadeh S, et al. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int Commun Heat Mass Trans. 2011;38(9):1283–90.

    Article  CAS  Google Scholar 

  26. Sokhal GS, Gangacharyulu D, Bulasara VK. Influence of copper oxide nanoparticles on the thermophysical properties and performance of flat tube of vehicle cooling system. Vacuum. 2018;157:268–76.

    Article  Google Scholar 

  27. Sheikhzadeh G, Fakhari M, Khorasanizadeh H. Experimental investigation of laminar convection heat transfer of Al2O3-ethylene glycol-water nanofluid as a coolant in a car radiator. J Appl Fluid Mech. 2017;10(1):209–19.

    Article  Google Scholar 

  28. Gulhane A, Chincholkar S. Experimental investigation of convective heat transfer coefficient of Al2O3/water nanofluid at lower concentrations in a car radiator. Heat Trans Asian Res. 2017;46(8):1119–29.

    Article  Google Scholar 

  29. Samira P, et al. Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator Korean. J Chem Eng. 2015;32(4):609–16.

    CAS  Google Scholar 

  30. Sonage B, Mohanan P. Miniaturization of automobile radiator by using zinc-water and zinc oxide-water nanofluids. J Mech Sci Technol. 2015;29(5):2177–85.

    Article  Google Scholar 

  31. Heris SZ, et al. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. J Dispers Sci Technol. 2014;35(5):677–84.

    Article  CAS  Google Scholar 

  32. Chavan, D. and A.T. Pise, Performance investigation of an automotive car radiator operated with nanofluid as a coolant. J Therm Sci Eng Appl, 2014. 6(2).

  33. Colangelo G, et al. Numerical evaluation of a hvac system based on a high-performance heat transfer fluid. Energies. 2021;14(11):3298.

    Article  CAS  Google Scholar 

  34. Milanese M, et al. Experimental evaluation of a full-scale HVAC system working with nanofluid. Energies. 2022;15(8):2902.

    Article  CAS  Google Scholar 

  35. Colangelo G, et al. Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy. 2016;95:124–36.

    Article  CAS  Google Scholar 

  36. Iacobazzi F, et al. A critical analysis of clustering phenomenon in Al2O3 nanofluids. J Therm Anal Calorim. 2019;135(1):371–7.

    Article  CAS  Google Scholar 

  37. Babat, R.A.A., et al., Experimental study on the utilization of magnetic nanofluids in an air-to-air heat pipe heat exchanger. Chem Eng Commun, 2021: p. 1-11.

  38. Çiftçi E, Martin K, Sözen A. Enhancement of thermal performance of the air-to-air heat pipe heat exchanger (AAHX) with aluminate spinel-based binary hybrid nanofluids. Heat Trans Res. 2021;52(17):81.

    Article  Google Scholar 

  39. Goudarzi K, Jamali H. Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng. 2017;118:510–7.

    Article  CAS  Google Scholar 

  40. Mahbubul I, et al. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrasonics Sonochem. 2017;37:360–7.

    Article  CAS  Google Scholar 

  41. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  42. Touloukian, Y. and E. Buyco, Thermophysical properties of matter-The TPRC data series. Volume 5. Specific heat-nonmetallic solids. 1970, Thermophysical and electronic properties information analysis center.

  43. Elibol, E.A. and O. Turgut, Heat transfer and fluid flow characteristics in a long offset strip fin channel by using TiO2-water nanofluid. Arab J Sci Eng, 2022: p. 1-14.

  44. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Trans. 2011;54(19–20):4410–28.

    Article  CAS  Google Scholar 

  45. Maxwell, J.C., A treatise on electricity and magnetism, Clarendon. Oxford, 1881. 314: p. 1873.

  46. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49(9):1536–46.

    Article  CAS  Google Scholar 

  47. Razi P, Akhavan-Behabadi M, Saeedinia M. Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Trans. 2011;38(7):964–71.

    Article  CAS  Google Scholar 

  48. Kine S, McClintock F. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  49. Holman, J.P., Experimental methods for engineers. 2012.

  50. Ni K, et al. The velocity dependence of viscosity of flowing water. J Mol Liquids. 2019;278:234–8.

    Article  CAS  Google Scholar 

  51. Iacobazzi F, et al. An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid. Energy. 2016;116:786–94.

    Article  CAS  Google Scholar 

  52. Milanese M, et al. An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids. Int J Heat Mass Trans. 2016;103:564–71.

    Article  CAS  Google Scholar 

  53. Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Trans. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  54. Keblinski P, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Trans. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  55. Dey D, Sahu DS. A review on the application of the nanofluids. Heat Transfer. 2021;50(2):1113–55.

    Article  Google Scholar 

  56. Elibol EA, Turgut O. Thermal-hydraulic performance of TiO2-water nanofluids in an offset strip fin heat exchanger. Therm Sci. 2022;26(1):553–65.

    Article  Google Scholar 

Download references

Acknowledgements

The present study is financially supported by the Unit of Scientific Research Projects of Gazi University under the Project 06/2020-09.

Author information

Authors and Affiliations

Authors

Contributions

EAE contributed to writing-original draft preparation, conceptualization, investigation; OT contributed to writing-reviewing and methodology; FA contributed to carrying through uncertainty analysis; HS contributed to preparing nanofluid; AFC contributed to carrying out experiments.

Corresponding author

Correspondence to Emre Askin Elibol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elibol, E.A., Turgut, O., Aktas, F. et al. Experimental investigation on heat transfer and flow characteristics of TiO2-water nanofluid in a heavy vehicle radiator. J Therm Anal Calorim 148, 977–994 (2023). https://doi.org/10.1007/s10973-022-11817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11817-3

Keywords

Navigation