Skip to main content
Log in

Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 11 May 2023

This article has been updated

Abstract

In this study, the performance of a system consisting of an organic Rankine cycle (ORC) for generating power and an electrolyzer for producing hydrogen with a zeotropic mixture as working fluid to recover waste heat in a geothermal flash-binary cycle is investigated from energy and exergy point of view. The study also investigates the effect of using zeotropic mixtures with different compositions as the ORC's working fluid rather than pure fluids. Using the particle swarm optimization (PSO) algorithm, the optimization is performed to maximize the power production of the entire system. The results show that using the combination of pentane with other pure fluids as working fluid led to improved system performance in terms of power and hydrogen output. In view of ORC unit power output (31.51 kW), overall system power output (128.16 kW), and hydrogen output (0.39626 kg h−1 per kilogram of geothermal water), the pentane (0.54)/butene (0.46) mixture produces the best results. Under optimal operating conditions, the rate of exergy destruction, exergy and energy efficiency for the whole system is equal to 95.81 kW, 37.25% and 20.17%, respectively. It is also found that the composition of the zeotropic mixture has a significant impact on the performance of the ORC as well as hydrogen production, which is associated with the extent of temperature glide in the mixture. When pentane (0.54)/butene (0.46) is used as the working fluid, the highest improvement related to use of zeotropic mixture instead of pure fluid is observed, which increases the power output of the ORC unit and the hydrogen output of the system by, respectively, 22.53% and 23.02%. In the end, the effect of flash chamber pressure on the total power and hydrogen output is also investigated. This investigation shows that as this pressure increases, the total power output decreases. However, although a lower chamber pressure is more desirable, given the impact on the hydrogen production and the turbine size, it is preferable to keep the flash chamber pressure moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Harjanne A, Korhonen JM. Abandoning the concept of renewable energy. Energy Policy. 2019;127:330–40.

    Article  Google Scholar 

  2. Kalbasi R, Jahangiri M, Mosavi A, Jalaladdin Hosseini Dehshiri S, Shahabaddin Hosseini Dehshiri S, Ebrahimi S, et al. Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustain Energy Technol Assess. 2021;45:101097. https://doi.org/10.1016/j.seta.2021.101097.

    Article  Google Scholar 

  3. Mostafaeipour A, Jahangiri M, Haghani A, Dehshiri SJH, Dehshiri SSH, Sedaghat A, et al. Statistical evaluation of using the new generation of wind turbines in South Africa. Energy Rep. 2020;6:2816–27.

    Article  Google Scholar 

  4. Rostamzadeh H, Ebadollahi M, Ghaebi H, Shokri A. Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Convers Manag. 2019;183:210–29.

    Article  CAS  Google Scholar 

  5. Mostafaeipour A, Hosseini Dehshiri SJ, Hosseini Dehshiri SS, Jahangiri M, Techato K. A thorough analysis of potential geothermal project locations in Afghanistan. Sustainability. 2020;12(20):8397.

    Article  Google Scholar 

  6. Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev. 2000;4(2):157–75.

    Article  Google Scholar 

  7. Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, De Paepe M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sustain Energy Rev. 2015;47:448–61.

    Article  CAS  Google Scholar 

  8. Mahmoudan A, Samadof P, Sadeghzadeh M, Jalili M, Sharifpur M, Kumar R. Thermodynamic and exergoeconomic analyses and performance assessment of a new configuration of a combined cooling and power generation system based on ORC–VCR. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10230-y.

    Article  Google Scholar 

  9. Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles: a review of various applications. Renew Sustain Energy Rev. 2011;15(8):3963–79.

    Article  CAS  Google Scholar 

  10. Ehyaei M, Ahmadi A, Assad MEH, Rosen MA. Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: energy, exergy, and economic analyses and optimization. J Clean Prod. 2020;258:120780.

    Article  CAS  Google Scholar 

  11. Ahmadi A, Assad MEH, Jamali D, Kumar R, Li Z, Salameh T, et al. Applications of geothermal organic Rankine Cycle for electricity production. J Clean Prod. 2020;274:122950.

    Article  Google Scholar 

  12. Assad MEH, Aryanfar Y, Radman S, Yousef B, Pakatchian M. Energy and exergy analyses of single flash geothermal power plant at optimum separator temperature. Int J Low Carbon Technol. 2021.

  13. Chahartaghi M, Kalami M, Ahmadi MH, Kumar R, Jilte R. Energy and exergy analyses and thermo-economic optimization of geothermal heat pump for domestic water heating. Int J Low Carbon Technol. 2019;14(2):108–21.

    Article  CAS  Google Scholar 

  14. Haghighi A, Pakatchian MR, Assad MEH, Duy VN, Nazari MA. A review on geothermal Organic Rankine cycles: modeling and optimization. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10357-y.

    Article  Google Scholar 

  15. Assad MEH, Khosravi A, Nazari MA, Rosen MA. Geothermal power plants. Design and performance optimization of renewable energy systems. Elsevier; 2021. p. 147–62.

  16. Noroozian A, Naeimi A, Bidi M, Ahmadi MH. Exergoeconomic comparison and optimization of organic Rankine cycle, trilateral Rankine cycle and transcritical carbon dioxide cycle for heat recovery of low-temperature geothermal water. Proc Inst Mech Eng A J Power Energy. 2019;233(8):1068–84.

    Article  CAS  Google Scholar 

  17. Yari M. Exergetic analysis of various types of geothermal power plants. Renew Energy. 2010;35(1):112–21.

    Article  CAS  Google Scholar 

  18. Shokati N, Ranjbar F, Yari M. Comparative and parametric study of double flash and single flash/ORC combined cycles based on exergoeconomic criteria. Appl Therm Eng. 2015;91:479–95.

    Article  CAS  Google Scholar 

  19. Zare V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers Manag. 2015;105:127–38.

    Article  Google Scholar 

  20. Shokati N, Ranjbar F, Yari M. Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: a comparative study. Renew Energy. 2015;83:527–42.

    Article  CAS  Google Scholar 

  21. Angelino G, Di Paliano PC. Multicomponent working fluids for organic Rankine cycles (ORCs). Energy. 1998;23(6):449–63.

    Article  CAS  Google Scholar 

  22. Schilling J, Entrup M, Hopp M, Gross J, Bardow A. Towards optimal mixtures of working fluids: integrated design of processes and mixtures for Organic Rankine Cycles. Renew Sustain Energy Rev. 2021;135:110179.

    Article  CAS  Google Scholar 

  23. Heberle F, Preißinger M, Brüggemann D. Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources. Renew Energy. 2012;37(1):364–70.

    Article  CAS  Google Scholar 

  24. Chen X, Liu C, Li Q, Wang X, Wang S. Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids. Energy. 2020;191:116576.

    Article  CAS  Google Scholar 

  25. Cai J, Shu G, Tian H, Wang X, Wang R, Shi X. Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture. Energy. 2020;197:117003.

    Article  CAS  Google Scholar 

  26. Kang Z, Zhu J, Lu X, Li T, Wu X. Parametric optimization and performance analysis of zeotropic mixtures for an organic Rankine cycle driven by low-medium temperature geothermal fluids. Appl Therm Eng. 2015;89:323–31.

    Article  CAS  Google Scholar 

  27. Deethayat T, Kiatsiriroat T, Thawonngamyingsakul C. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid. Case Stud Therm Eng. 2015;6:155–61.

    Article  Google Scholar 

  28. Lecompte S, Ameel B, Ziviani D, van den Broek M, De Paepe M. Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles. Energy Convers Manag. 2014;85:727–39.

    Article  CAS  Google Scholar 

  29. Nemati A, Sadeghi M, Yari M. Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid. Desalination. 2017;422:113–23.

    Article  CAS  Google Scholar 

  30. Sadeghi M, Nemati A, Yari M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy. 2016;109:791–802.

    Article  CAS  Google Scholar 

  31. Yue C, Han D, Pu W, He W. Thermal matching performance of a geothermal ORC system using zeotropic working fluids. Renew Energy. 2015;80:746–54.

    Article  CAS  Google Scholar 

  32. Andrews J, Shabani B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscip Rev Energy Environ. 2014;3(5):474–89.

    Google Scholar 

  33. Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. Int J Hydrog Energy. 2012;37(2):1184–203.

    Article  CAS  Google Scholar 

  34. Yilmaz C. Thermoeconomic modeling and optimization of a hydrogen production system using geothermal energy. Geothermics. 2017;65:32–43.

    Article  Google Scholar 

  35. Ghazvini M, Sadeghzadeh M, Ahmadi MH, Moosavi S, Pourfayaz F. Geothermal energy use in hydrogen production: a review. Int J Energy Res. 2019;43(14):7823–51.

    Google Scholar 

  36. Jain I. Hydrogen the fuel for 21st century. Int J Hydrog Energy. 2009;34(17):7368–78.

    Article  CAS  Google Scholar 

  37. Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy. 2015;40(34):11094–111.

    Article  CAS  Google Scholar 

  38. Ahmadi P, Dincer I, Rosen MA. Development and assessment of an integrated biomass-based multi-generation energy system. Energy. 2013;56:155–66.

    Article  CAS  Google Scholar 

  39. Ishaq H, Dincer I. Comparative assessment of renewable energy-based hydrogen production methods. Renew Sustain Energy Rev. 2021;135:110192.

    Article  CAS  Google Scholar 

  40. Mostafaeipour A, Dehshiri SJH, Dehshiri SSH. Ranking locations for producing hydrogen using geothermal energy in Afghanistan. Int J Hydrog Energy. 2020.

  41. Han J, Wang X, Xu J, Yi N, Talesh SSA. Thermodynamic analysis and optimization of an innovative geothermal-based organic Rankine cycle using zeotropic mixtures for power and hydrogen production. Int J Hydrog Energy. 2020;45(15):8282–99.

    Article  CAS  Google Scholar 

  42. Haider SA, Sajid M, Iqbal S. Forecasting hydrogen production potential in islamabad from solar energy using water electrolysis. Int J Hydrog Energy. 2021;46(2):1671–81. https://doi.org/10.1016/j.ijhydene.2020.10.059.

    Article  CAS  Google Scholar 

  43. Gill EZ, Ratlamwala TAH, Hussain G, Alkahtani M. Energy, exergy, exergo-economic and exergo-environmental analyses of solar based hydrogen generation system. Int J Hydrog Energy. 2020. https://doi.org/10.1016/j.ijhydene.2020.07.100.

    Article  Google Scholar 

  44. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Process development of a solar-assisted multi-production plant: power, cooling, and hydrogen. Int J Hydrog Energy. 2020;45(55):30056–79.

    Article  CAS  Google Scholar 

  45. Mostafaeipour A, Dehshiri SJH, Dehshiri SSH, Jahangiri M. Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. Int J Hydrog Energy. 2020.

  46. Ishaq H, Dincer I. Evaluation of a wind energy based system for co-generation of hydrogen and methanol production. Int J Hydrog Energy. 2020;45(32):15869–77. https://doi.org/10.1016/j.ijhydene.2020.01.037.

    Article  CAS  Google Scholar 

  47. Huang C-W, Nguyen B-S, Wu JCS, Nguyen V-H. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. Int J Hydrog Energy. 2020;45(36):18144–59. https://doi.org/10.1016/j.ijhydene.2019.08.121.

    Article  CAS  Google Scholar 

  48. Oruc O, Dincer I. Evaluation of hydrogen production with iron-based chemical looping fed by different biomass. Int J Hydrog Energy. 2020;45(60):34557–65. https://doi.org/10.1016/j.ijhydene.2020.04.119.

    Article  CAS  Google Scholar 

  49. Balta MT, Dincer I, Hepbasli A. Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production. Energy. 2010;35(8):3263–72.

    Article  Google Scholar 

  50. Yilmaz C, Kanoglu M, Bolatturk A, Gadalla M. Economics of hydrogen production and liquefaction by geothermal energy. Int J Hydrog Energy. 2012;37(2):2058–69. https://doi.org/10.1016/j.ijhydene.2011.06.037.

    Article  CAS  Google Scholar 

  51. Ratlamwala TAH, Dincer I. Comparative efficiency assessment of novel multi-flash integrated geothermal systems for power and hydrogen production. Appl Therm Eng. 2012;48:359–66. https://doi.org/10.1016/j.applthermaleng.2012.04.039.

    Article  Google Scholar 

  52. Tolga Balta M, Dincer I, Hepbasli A. Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrog Energy. 2009;34(7):2925–39. https://doi.org/10.1016/j.ijhydene.2009.01.087.

    Article  CAS  Google Scholar 

  53. AlZaharani AA, Dincer I, Naterer GF. Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation. Int J Hydrog Energy. 2013;38(34):14505–11. https://doi.org/10.1016/j.ijhydene.2013.09.002.

    Article  CAS  Google Scholar 

  54. Ganjehsarabi H. Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. Int J Hydrog Energy. 2019;44(34):18703–11. https://doi.org/10.1016/j.ijhydene.2018.11.231.

    Article  CAS  Google Scholar 

  55. Feili M, Rostamzadeh H, Parikhani T, Ghaebi H. Hydrogen extraction from a new integrated trigeneration system working with zeotropic mixture, using waste heat of a marine diesel engine. Int J Hydrog Energy. 2020;45(41):21969–94.

    Article  CAS  Google Scholar 

  56. Zarrouk SJ, Moon H. Efficiency of geothermal power plants: a worldwide review. Geothermics. 2014;51:142–53.

    Article  Google Scholar 

  57. Kianfard H, Khalilarya S, Jafarmadar S. Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Convers Manag. 2018;177:339–49.

    Article  CAS  Google Scholar 

  58. Mostafaeipour A, Abesi S. Wind turbine productivity and development in Iran. In: 2010 International conference on biosciences. March 7–13, 2010. Cancun, Mexico. https://doi.org/10.1109/BioSciencesWorld.2010.30

  59. Mohammadi K, Mostafaeipour A, Dinpashoh Y, Poura N. Electricity generation and energy cost estimation of large-scale wind turbines in Jarandagh. Iran J Energy. 2014. https://doi.org/10.1155/2014/613681.

    Article  Google Scholar 

  60. Zarezade M, Mostafaeipour A. Identifying the effective factors on implementing the solar dryers for Yazd province. Iran Renew Sustain Energy Rev. 2016;57:765–75.

    Article  Google Scholar 

  61. Quoilin S, Broek MVD, Declaye S, Dewallef P, Lemort V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev. 2013;22:168–86. https://doi.org/10.1016/j.rser.2013.01.028.

    Article  CAS  Google Scholar 

  62. Kolahi M, Yari M, Mahmoudi SMS, Mohammadkhani F. Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: case of waste heat recovery in an offshore platform. Case Stud Therm Eng. 2016;8:51–70. https://doi.org/10.1016/j.csite.2016.05.001.

    Article  Google Scholar 

  63. Lemmon EW, Huber ML, Mclinden MO. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 8.0. 2007.

  64. Kolahi M-R, Nemati A, Yari M. Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics. 2018;74:45–56. https://doi.org/10.1016/j.geothermics.2018.02.004.

    Article  Google Scholar 

  65. Kanoglu M, Bolatturk A. Performance and parametric investigation of a binary geothermal power plant by exergy. Renew Energy. 2008;33(11):2366–74.

    Article  Google Scholar 

  66. Çengel YA, Boles MA, Kanoğlu M. Property tables booklet to accompany thermodynamics: an engineering approach. McGraw-Hill Higher Education; 2015.

    Google Scholar 

  67. Ni M, Leung MK, Leung DY. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Convers Manag. 2008;49(10):2748–56.

    Article  CAS  Google Scholar 

  68. Santarelli M, Torchio M. Experimental analysis of the effects of the operating variables on the performance of a single PEMFC. Energy Convers Manag. 2007;48(1):40–51.

    Article  CAS  Google Scholar 

  69. Gurau V, Barbir F, Liu H. An analytical solution of a half-cell Model for PEM fuel cells. J Electrochem Soc. 2000;147(7):2468.

    Article  CAS  Google Scholar 

  70. Ahmadi P, Dincer I, Rosen MA. Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system. Energy Convers Manag. 2013;76:282–300.

    Article  Google Scholar 

  71. Xu G, Yu G. Reprint of: On convergence analysis of particle swarm optimization algorithm. J Comput Appl Math. 2018;340:709–17.

    Article  Google Scholar 

  72. Shah RK, Sekulic DP. Fundamentals of heat exchanger design. John Wiley & Sons; 2003.

    Book  Google Scholar 

  73. Yilmaz C, Kanoglu M, Abusoglu A. Exergetic cost evaluation of hydrogen production powered by combined flash-binary geothermal power plant. Int J Hydrog Energy. 2015;40(40):14021–30. https://doi.org/10.1016/j.ijhydene.2015.07.031.

    Article  CAS  Google Scholar 

  74. Shu G, Gao Y, Tian H, Wei H, Liang X. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery. Energy. 2014;74:428–38. https://doi.org/10.1016/j.energy.2014.07.007.

    Article  CAS  Google Scholar 

  75. Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. J Power Sources. 2002;112(2):583–7. https://doi.org/10.1016/S0378-7753(02)00466-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Prince of Songkla University, Hatyai, Songkhla, Thailand from grant number ENV6402012N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuaanan Techato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The missing source line in the captions of Figure 1 and 2 were updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almutairi, K., Hosseini Dehshiri , . ., Mostafaeipour, A. et al. Performance optimization of a new flash-binary geothermal cycle for power/hydrogen production with zeotropic fluid. J Therm Anal Calorim 145, 1633–1650 (2021). https://doi.org/10.1007/s10973-021-10868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10868-2

Keywords

Navigation