Skip to main content
Log in

Optimization of entropy production in flow of hybrid nanomaterials through Darcy–Forchheimer porous space

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transportation advancement in liquid is a crucial work which can be easily obtained via utilization of hybrid nanoparticles. Therefore, main concern of the current article is to address the entropy aspects in Dracy-Forchheimer flow of hybrid nanomaterials (kerosene oil, SWCNT and MWCNT). The novel features of Xue's which is modified and implemented for flow physical empirical relations (thermal conductivity, density and specific heat). Furthermore, entropy concept is utilized to estimate the frame of analysis disorderness. The transformed expressions have been computed through numerical scheme after conversion to ODEs by dimensionless variables. Graphical illustrations and tables are made to investigate the effects of noteworthy embedding variables on various distributions. Moreover, detailed analysis for temperature and velocity gradients against pertinent parameters at the surface is provided. Obtained findings reflect that temperature upgraded for both nanoliquid and hybrid nanoliquid by rising Eckert number and heat source parameter, whereas an opposite features is pointed out for gradient of temperature. It is also perceived that skin friction escalates for inertia coefficient, rotation parameter and porosity parameter. There is remarkable increase for SWCNT-MWCNT/kerosene oil hybrid nanofluid when compared with SWCNT/kerosene oil nanoliquid. Overall, hybrid nano phase has an incredible effect in comparison to nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publication- Fed. 1995;231:99–106.

    CAS  Google Scholar 

  2. Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  3. Das SK, Choi SU, Patel HE. Heat transfer in nanofluids a review. Heat Transf Eng. 2006;27:3–19.

    Article  CAS  Google Scholar 

  4. Xue Q, Xu WM. A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys. 2005;90:298–301.

    Article  CAS  Google Scholar 

  5. Wakif A, Boulahia Z, Sehaqui R. A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. 2018;9:1438–54.

    Article  Google Scholar 

  6. Wakif A, Boulahia Z, Mishra SR, Rashidi MM, Sehaqui R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur Phys J Plus. 2018;133:181.

    Article  Google Scholar 

  7. Wakif A, Boulahia Z, Sehaqui R. Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non uniform internal heating. J Nanofluids. 2017;6:136–48.

    Article  Google Scholar 

  8. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;135:3485–97.

    Article  CAS  Google Scholar 

  9. Ullah I, Hayat T, Alsaedi A, Asghar S. Modeling for radiated Marangoni convection flow of magneto-nanoliquid subject to Activation energy and chemical reaction. Sci Iran. 2020;27:3390–8.

    Google Scholar 

  10. Mahanthesh B, Gireesha BJ, Animasaun IL, Muhammad T, Shashikumar NS. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys Scr. 2019;94:085214.

    Article  CAS  Google Scholar 

  11. Hayat T, Ullah I, Muhammad T, Alsaedi A. Hydromagnetic squeezed flow of second-grade nanomaterials between two parallel disks. J Therm Anal Calorim. 2020;139:2067–77.

    Article  CAS  Google Scholar 

  12. Mahanthesh B, Gireesha BJ, Prasannakumara BC, Kumar PS. Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects. Results phys. 2017;7:2990–6.

    Article  Google Scholar 

  13. Makinde OD, Mahanthesh B, Gireesha BJ, Shashikumar NS, Monaledi RL, Tshehla MS. MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffusion Forum. 2018;384:69–79.

    Article  Google Scholar 

  14. Ullah I, Hayat T, Alsaedi A, Asghar S. Dissipative flow of hybrid nanoliquid (H2O-aluminum alloy nanoparticles) with thermal radiation. Phys Scr. 2019;94:125708.

    Article  CAS  Google Scholar 

  15. Seyyedi SM, Dogonchi AS, Ganji DD, Hashemi-Tilehnoee M. Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J Therm Anal Calorim. 2019;138:1607–21.

    Article  CAS  Google Scholar 

  16. Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab J Sci Eng. 2019;44:7919–31.

    Article  CAS  Google Scholar 

  17. Alsaadi FE, Ullah I, Hayat T, Alsaadi FE. Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by Arrhenius activation energy and thermal radiation. J Therm Anal Calorim. 2019;12:1–11.

    Google Scholar 

  18. Dogonchi AS. Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transfer. 2019;130:320–32.

    Article  Google Scholar 

  19. Uddin I, Ullah I, Ali R, Khan I, Nisar KS. Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl-Eyring nanofluids in the presence of activation energy and Joule heating. J Therm Anal Calorim. 2020;15:1–11.

    Google Scholar 

  20. Boulahia Z, Wakif A, Chamkha AJ, Amanulla CH, Sehaqui R. Effects of wavy wall amplitudes on mixed convection heat transfer in a ventilated wavy cavity filled by copper-water nanofluid containing a central circular cold body. J Nanofluids. 2019;8:1170–8.

    Article  Google Scholar 

  21. Hayat T, Muhammad K, Ullah I, Alsaedi A, Asghar S. Rotating squeezed flow with carbon nanotubes and melting heat. Phys Scr. 2019;94:035702.

    Article  CAS  Google Scholar 

  22. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137:865–77.

    Article  CAS  Google Scholar 

  23. Rashidi S, Eskandarian M, Mahian O, Poncet SJ. Combination of nanofluid and inserts for heat transfer enhancement. JTherm Anal Calorim. 2019;135:437–60.

    Article  CAS  Google Scholar 

  24. Hamzah MH, Sidik NA, Ken TL, Mamat R, Najafi G. Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int J Heat Mass Transfer. 2017;115:630–46.

    Article  CAS  Google Scholar 

  25. Kumar DD, Arasu AV. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sust Energ Rev. 2018;81:1669–89.

    Article  Google Scholar 

  26. Suresh S, Venkitaraj KP, Hameed MS, Sarangan J. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids. J Nanosci Nanotechnol. 2014;14:2563–72.

    Article  CAS  Google Scholar 

  27. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transfer. 2016;76:171–7.

    Article  Google Scholar 

  28. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor. J Mol Liq. 2018;272:226–36.

    Article  CAS  Google Scholar 

  29. Rostami MN, Dinarvand S, Pop I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chin J Phys. 2018;56:2465–78.

    Article  CAS  Google Scholar 

  30. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transfer. 1979;101:718–25.

    Article  Google Scholar 

  31. Bejan A. Entropy generation through heatand fluid flow. New York: Wiley; 1982.

    Google Scholar 

  32. Mustafa M, Pop I, Naganthran K, Nazar R. Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction. Eur J Mech B-Fluids. 2018;72:179–88.

    Article  Google Scholar 

  33. Shehzad SA, Madhu M, Shashikumar NS, Gireesha BJ, Mahanthesh B. Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel. J Therm Anal Calorim. 2020:1–11.

  34. Ullah I, Hayat T, Alsaedi A, Fardoun HM. Numerical treatment of melting heat transfer and entropy generation in stagnation point flow of hybrid nanomaterials (SWCNT-MWCNT/engine oil). Mod Phys Lett. B. 2021:2150102.

  35. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Phys B. 2005;368:302–7.

    Article  CAS  Google Scholar 

  36. Hayat T, Ullah I, Farooq M, Alsaedi A. Analysis of non-linear radiative stagnation point flow of Carreau fluid with homogeneous-heterogeneous reactions. Microsyst Technol. 2019;25:1243–50.

    Article  CAS  Google Scholar 

  37. Hayat T, Ullah I, Alsaedi A, Ahmad B. Numerical simulation for homogeneous–heterogeneous reactions in flow of Sisko fluid. J Braz Soc Mech Sci Eng. 2018;40:1–9.

    Article  Google Scholar 

  38. Ullah I, Ali R, Khan I, Nisar KS. Insight into kerosene conveying SWCNT and MWCNT nanoparticles through a porous medium: Significance of Coriolis force and entropy generation. Phys Scr. 2021;96:055705.

    Article  Google Scholar 

  39. Seth GS, Kumar R, Bhattacharyya A. Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy-Forchheimer porous medium: a numerical study. J Mol Liq. 2018;268:637–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Hayat, T. & Alsaedi, A. Optimization of entropy production in flow of hybrid nanomaterials through Darcy–Forchheimer porous space. J Therm Anal Calorim 147, 5855–5864 (2022). https://doi.org/10.1007/s10973-021-10830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10830-2

Keywords

Navigation