Skip to main content
Log in

Effect of various factors and diverse approaches to enhance the performance of solar stills: a comprehensive review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The need for fresh drinking water is increasing rapidly, and drinking water availability reduces day by day. Solar desalination is a viable option to change saltwater to fresh drinkable water. Solar still used for desalination includes processes like heating, evaporation, and condensation. The major problem faced by solar stills is that they have low productivity. Therefore, high demand for freshwater cannot be met. The present review aims to provide the researchers with an idea to select suitable methods for enhancing solar stills' performance. This article mainly focuses on the climatic, design, and operational parameters affecting the performance of solar stills. Results reveal that a combination of the incredible intensity of solar radiations, solar still type, and regions with optimum temperature can provide higher daily distillate output. Further, high productivity can be achieved with inclined solar stills by making an inclination angle equivalent to the location's latitude. A water depth of around 1 cm can provide the best output in terms of productivity for conventional solar stills. A combination of V-corrugated absorber plate with fins and energy storing materials coupled with external reflector plates can provide optimized conditions to enhance productivity. The performance of solar still can be improved by minimizing the gap between absorber plates and condensing cover. Finally, the sun tracking system, either single or dual axis in solar still, can enhance productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abujazar MSS, Fatihah S, Lotfy ER, Kabeel AE, Sharil S. Performance evaluation of inclined copper-stepped solar still in a wet tropical climate. Desalination. 2018;425:94–103. https://doi.org/10.1016/j.desal.2017.10.022.

    Article  CAS  Google Scholar 

  2. Velmurugan V, Srithar K. Performance analysis of solar stills based on various factors affecting the productivity: a review. Renew Sustain Energy Rev. 2011;15:1294–304. https://doi.org/10.1016/j.rser.2010.10.012.

    Article  CAS  Google Scholar 

  3. Kumar PN, Manokar AM, Madhu B, Kabeel AE, Arunkumar T, Panchal H, et al. Experimental investigation on the effect of water mass in triangular pyramid solar still integrated to inclined solar still. Groundw Sustain Dev. 2017;5:229–34. https://doi.org/10.1016/j.gsd.2017.08.003.

    Article  Google Scholar 

  4. Modi KV, Nayi KH, Sharma SS. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundw Sustain Dev. 2020;10:100299.

    Article  Google Scholar 

  5. Alwan NT, Shcheklein SE, Ali OM. Case studies in thermal engineering experimental investigation of modified solar still integrated with solar collector. Case Stud Therm Eng. 2020;19:100614. https://doi.org/10.1016/j.csite.2020.100614.

    Article  Google Scholar 

  6. Javadi MA, Ahmadi MH, Khalaji M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ Prog Sustain Energy. 2020;39:e13322.

    Article  CAS  Google Scholar 

  7. He W, Namar MM, Li Z, Maleki A, Tlili I, Safdari SM. Thermodynamic analysis of a solar-driven high-temperature steam electrolyzer for clean hydrogen production. Appl Therm Eng. 2020;172:115152. https://doi.org/10.1016/j.applthermaleng.2020.115152.

    Article  CAS  Google Scholar 

  8. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: a critical review. Energy Sci Eng. 2018;6:340–61.

    Article  Google Scholar 

  9. Jathar LD, Ganesan S, Shahapurkar K, Patil S, Darekar V, Chincholi V. Comprehensive review on the prediction of thermal behavior of solar stills with diverse designs. In: AIP conference of proceedings 2020.

  10. Shatat M, Riffat SB. Water desalination technologies utilizing conventional and renewable energy sources. Int J Low Carbon Technol. 2014;9:1–19.

    Article  Google Scholar 

  11. Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, et al. Pathways and challenges for efficient solar-thermal desalination. Sci Adv. 2019;5:eaax0763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhatti MM, Phali L, Khalique CM. Heat transfer effects on electro-magnetohydrodynamic Carreau fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium. Arch Appl Mech. 2021. https://doi.org/10.1007/s00419-020-01847-4.

    Article  Google Scholar 

  13. Jathar LD, Ganesan S. Assessing the performance of concave type stepped solar still with brick, sand, and concrete pieces. Int J Ambient Energy. 2020;0:1–17.

    Google Scholar 

  14. Jathar LD, Ganesan S. Statistical analysis of brick, sand and concrete pieces on the performance of concave type stepped solar still. Int J Ambient Energy. 2020. https://doi.org/10.1080/01430750.2020.1848918.

    Article  Google Scholar 

  15. Pangarkar BL, Sane MG, Guddad M. Reverse osmosis and membrane distillation for desalination of groundwater: a review. ISRN Mater Sci. 2011;2011:1–9.

    Article  Google Scholar 

  16. AlMadani HMN. Water desalination by solar powered electrodialysis process. Renew Energy. 2003;28:1915–24.

    Article  CAS  Google Scholar 

  17. Ali M, Haj ME, Taha E, Soudan B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. 2017. https://doi.org/10.1016/j.desal.2017.11.018.

    Article  Google Scholar 

  18. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Pourfayaz F, Rahimzadeh M, Ming T. A review on solar-assisted gas turbines. Energy Sci Eng. 2018;6:658–74.

    Article  Google Scholar 

  19. Malaiyappan P, Elumalai N. Single basin and single slope solar still: Various basin material thermal research. J Chem Pharm Sci. 2015;7:48–51.

    Google Scholar 

  20. Ali Samee M, Mirza UK, Majeed T, Ahmad N. Design and performance of a simple single basin solar still. Renew Sustain Energy Rev. 2007;11:543–9.

    Article  CAS  Google Scholar 

  21. Gnanadason MK, Kumar PS, Wilson VH, Kumaravel A. Productivity enhancement of a-single basin solar still. Desalin Water Treat. 2015;55:1998–2008.

    Article  CAS  Google Scholar 

  22. Abujazar MSS, Fatihah S, Kabeel AE. Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate. Desalination. 2017;423:141–8. https://doi.org/10.1016/j.desal.2017.09.020.

    Article  CAS  Google Scholar 

  23. Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45.

    Article  Google Scholar 

  24. Nikam KC, Kumar R, Jilte R. Economic and exergoeconomic investigation of 660 MW coal-fired power plant. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10213-z.

    Article  Google Scholar 

  25. Badran OO, Abu-Khader MM. Evaluating thermal performance of a single slope solar still. Heat Mass Transf Stoffuebertragung. 2007;43:985–95.

    Article  CAS  Google Scholar 

  26. Almuhanna EA. Evaluation of single slop solar still integrated with evaporative cooling system for brackish water desalination. J Agric Sci. 2013;6:48.

    Google Scholar 

  27. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Parameters affecting solar still productivity. Energy Convers Manag. 2000;41:1797–809.

    Article  CAS  Google Scholar 

  28. Ghoneyem A, Ileri A. Software to analyze solar stills and an experimental study on the effects of the cover. Desalination. 1997;114:37–44.

    Article  CAS  Google Scholar 

  29. El-Sebaii AA. Effect of wind speed on active and passive solar stills. Energy Convers Manag. 2004;45:1187–204.

    Article  Google Scholar 

  30. Soliman SH. Effect of wind on solar distillation. Sol Energy. 1972;13:403–15.

    Article  Google Scholar 

  31. Garg HP, Mann HS. Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions. Sol Energy. 1976.

  32. Tiwari GN, Dimri V, Chel A. Parametric study of an active and passive solar distillation system: energy and exergy analysis. Desalination. 2009;242:1–18.

    Article  CAS  Google Scholar 

  33. Zurigat YH, Abu-Arabi MK. Modelling and performance analysis of a regenerative solar desalination unit. Appl Therm Eng. 2004;24:1061–72.

    Article  CAS  Google Scholar 

  34. Reddy RM, Reddy KH. Upward heat flow analysis in basin type solar still. J Min Metall Sect B Metall. 2009;45:121–6.

    CAS  Google Scholar 

  35. Hegazy AA. Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors. Renew energy. 2001;22:525–40.

    Article  CAS  Google Scholar 

  36. El-Nashar AM. The effect of dust accumulation on the performance of evacuated tube collectors. Sol Energy. 1994;53:105–15.

    Article  Google Scholar 

  37. El-Nashar AM. Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant. Desalination. 2009;239:66–81.

    Article  CAS  Google Scholar 

  38. Zamfir E, Oancea C, Badescu V. Cloud cover influence on long-term performances of flat plate solar collectors. Renew Energy. 1994;4:339–47.

    Article  Google Scholar 

  39. Shahid A, Huang HL, Khalique CM, Bhatti MM. Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10295-9.

    Article  Google Scholar 

  40. Bhatti MM, Abdelsalam SI. Thermodynamic entropy of a magnetized Ree-Eyring particle-fluid motion with irreversibility process: A mathematical paradigm. ZAMM Zeitschrift fur Angew Math und Mech. 2020;2020:1–17.

    Google Scholar 

  41. Burbano AM. Evaluation of basin and insulating materials in solar still prototype for solar distillation plant at kamusuchiwo community, high guajira. Renew Energy Power Qual J. 2014;1:547–52.

    Article  Google Scholar 

  42. Alaudeen A, Thahir ASA, Vasanth K, Tom AMI, Srithar K. Experimental and theoretical analysis of solar still with glass basin. Desalin Water Treat. 2015;54:1489–98.

    CAS  Google Scholar 

  43. Badran OO. Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination. 2007;209:136–43.

    Article  CAS  Google Scholar 

  44. Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113:684–93. https://doi.org/10.1016/j.applthermaleng.2016.11.085.

    Article  CAS  Google Scholar 

  45. Nikam KC, Kumar R, Jilte R. Exergy and exergo-environmental analysis of a 660 MW supercritical coal-fired power plant. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10268-y.

    Article  Google Scholar 

  46. Goshayeshi HR, Safaei MR. Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still. Int J Numer Methods Heat Fluid Flow. 2019;30:3183–98. https://doi.org/10.1108/HFF-01-2019-0018.

    Article  Google Scholar 

  47. Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. The energetic performance of a liquid chemical looping cycle with solar thermal energy storage. Energy. 2019;170:93–101.

    Article  CAS  Google Scholar 

  48. Abdullah AS, Younes MM, Omara ZM, Essa FA. New design of trays solar still with enhanced evaporation methods: comprehensive study. Sol Energy. 2020;203:164–74.

    Article  Google Scholar 

  49. Velmurugan V, Naveen Kumar KJ, Noorul Haq T, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy. 2009;34:1179–86.

    Article  CAS  Google Scholar 

  50. Samuel Hansen R, Kalidasa MK. Enhancement of integrated solar still using different new absorber configurations: an experimental approach. Desalination. 2017;422:59–67.

    Article  CAS  Google Scholar 

  51. Anburaj P, Samuel Hansen R, Kalidasa MK. Performance of an inclined solar still with rectangular grooves and ridges. Appl Sol Energy. 2013;49:22–6.

    Article  Google Scholar 

  52. Kabeel AE, Teamah MA. Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium. J Clean Prod. 2017;161:881–7

  53. Elshamy SM, El-Said EMS. Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber. J Clean Prod. 2018;195:328–39.

    Article  Google Scholar 

  54. Armenta-Deu C. Performance test in semispherical solar collectors with discontinuous absorber. Renew Energy. 2019;143:950–7.

    Article  Google Scholar 

  55. Jani HK, Modi KV. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol Energy. 2019;179:186–94.

    Article  Google Scholar 

  56. Velmurugan V, Deenadayalan CK, Vinod H, Srithar K. Desalination of effluent using fin type solar still. Energy. 2008;33:1719–27.

    Article  Google Scholar 

  57. Sathyamurthy R, Mageshbabu D, Madhu B, Muthu Manokar A, Rajendra Prasad A, Sudhakar M. Influence of fins on the absorber plate of tubular solar still: an experimental study. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.11.355.

    Article  Google Scholar 

  58. Panchal H, Mevada D, Sadasivuni KK, Essa FA, Shanmugan S, Khalid M. Experimental and water quality analysis of solar stills with vertical and inclined fins. Groundw Sustain Dev. 2020. https://doi.org/10.1016/j.gsd.2020.100410.

    Article  Google Scholar 

  59. Mousa H, Naser J. The effect of phase change material on the water temperature in a solar basin: theoretical and experimental investigation. J Energy Storage. 2019;25:100871. https://doi.org/10.1016/j.est.2019.100871.

    Article  Google Scholar 

  60. Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019;7:1649–58.

    Article  Google Scholar 

  61. Arain MB, Bhatti MM, Zeeshan A, Saeed T, Hobiny A. Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math Probl Eng. 2020.

  62. Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Experimental assessment of copper oxide for liquid chemical looping for thermal energy storage. J Energy Storage. 2019;21:216–21. https://doi.org/10.1016/j.est.2018.11.033.

    Article  Google Scholar 

  63. Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Sol Energy. 2017;157:251–8. https://doi.org/10.1016/j.solener.2017.08.039.

    Article  CAS  Google Scholar 

  64. Sakthivel M, Shanmugasundaram S. Effect of energy storage medium (black granite gravel) on the performance of a solar still. Int J Energy Res. 2008;

  65. Abdallah S, Abu-Khader MM, Badran O. Effect of various absorbing materials on the thermal performance of solar stills. Desalination. 2009;32:68–82.

    Google Scholar 

  66. Kalidasa Murugavel K, Chockalingam KKSK, Srithar K. An experimental study on single basin double slope simulation solar still with thin layer of water in the basin. Desalination. 2008;220:687–93.

    Article  CAS  Google Scholar 

  67. Murugavel KK, Sivakumar S, Ahamed JR, Chockalingam KKSK, Srithar K. Single basin double slope solar still with minimum basin depth and energy storing materials. Appl Energy. 2010;87:514–23. https://doi.org/10.1016/j.apenergy.2009.07.023.

    Article  CAS  Google Scholar 

  68. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Solar still productivity enhancement. Energy Convers Manag. 2001;42:1401–8.

    Article  CAS  Google Scholar 

  69. Kabeel AE, Abdelgaied M, Eisa A. Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials. J Clean Prod. 2018;183:20–5.

    Article  CAS  Google Scholar 

  70. Harris Samuel DG, Nagarajan PK, Sathyamurthy R, El-Agouz SA, Kannan E. Improving the yield of fresh water in conventional solar still using low cost energy storage material. Energy Convers Manag. 2016;112:125–34. https://doi.org/10.1016/j.enconman.2015.12.074.

    Article  Google Scholar 

  71. Omara ZM, Kabeel AE. The performance of different sand beds solar stills. Int J Green Energy. 2014;11:240–54.

    Article  Google Scholar 

  72. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Phys A Stat Mech its Appl. 2019;534:122146. https://doi.org/10.1016/j.physa.2019.122146.

    Article  Google Scholar 

  73. Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies. 2019;12(10):1–13. https://doi.org/10.3390/en12102002.

    Article  Google Scholar 

  74. Ghalandari M, Maleki A, Haghighi A, Safdari Shadloo M, Alhuyi Nazari M, Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J Mol Liq. 2020;313:113476. https://doi.org/10.1016/j.molliq.2020.113476.

    Article  CAS  Google Scholar 

  75. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano Struct Nano Objects. 2019;20:100386. https://doi.org/10.1016/j.nanoso.2019.100386.

    Article  Google Scholar 

  76. Aramesh M, Pourfayaz F, Haghir M, Kasaeian A, Ahmadi MH. Investigating the effect of using nanofluids on the performance of a double-effect absorption refrigeration cycle combined with a solar collector. Proc Inst Mech Eng Part A J Power Energy. 2020;234:981–93.

    Article  CAS  Google Scholar 

  77. Toghyani S, Afshari E, Baniasadi E, Shadloo MS. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system. Renew Energy. 2019;141:1013–25. https://doi.org/10.1016/j.renene.2019.04.073.

    Article  CAS  Google Scholar 

  78. Safdari Shadloo M. Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes. Int J Numer Methods Heat Fluid Flow. 2020.

  79. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, et al. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139:2623–31. https://doi.org/10.1007/s10973-019-08684-w.

    Article  CAS  Google Scholar 

  80. Ma D. Hybrid nanoparticles: an introduction. Noble Met Oxide Hybrid Nanoparticles Fundam Appl. 2018;3–6.

  81. El-Gazar EF, Zahra WK, Hassan H, Rabia SI. Fractional modeling for enhancing the thermal performance of conventional solar still using hybrid nanofluid: energy and exergy analysis. Desalination. 2021;503:114847.

    Article  CAS  Google Scholar 

  82. Kabeel AE, Abdelgaied M, Eisa A. Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew Energy. 2019;132:119–28.

    Article  CAS  Google Scholar 

  83. Katekar VP, Deshmukh SS. A review of the use of phase change materials on performance of solar stills. J Energy Storage. 2020;30:101398.

    Article  Google Scholar 

  84. Ali Z, Zeeshan A, Bhatti MM, Hobiny A, Saeed T. Insight into the dynamics of Oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab J Sci Eng. 2021. https://doi.org/10.1007/s13369-020-05324-6.

    Article  Google Scholar 

  85. Panchal H. Performance investigation on variations of glass cover thickness on solar still: experimental and theoretical analysis. Technol Econ Smart Grids Sustain Energy. 2016. https://doi.org/10.1007/s40866-016-0007-0.

    Article  Google Scholar 

  86. Khalifa AJN, Ibrahim HA. Effect of inclination of the external reflector on the performance of a basin type solar still at various seasons. Energy Sustain Dev. 2009;13:244–9.

    Article  Google Scholar 

  87. Tamini A. Performance of a solar still with reflectors and black dye. Sol Wind Technol. 1987;4:443–6.

    Article  Google Scholar 

  88. Keshtkar M, Eslami M, Jafarpur K. Effect of design parameters on performance of passive basin solar stills considering instantaneous ambient conditions: a transient CFD modeling. Sol Energy. 2020;201:884–907. https://doi.org/10.1016/j.solener.2020.03.068.

    Article  Google Scholar 

  89. Rahbar N, Esfahani JA. Productivity estimation of a single-slope solar still: theoretical and numerical analysis. Energy. 2013;49:289–97.

    Article  Google Scholar 

  90. Chatzinikolaou S, Ventikos N, Bilgili L, Celebi UB. Energy, transportation and global warming. EnergyTransp Glob Warm. 2016. https://doi.org/10.1007/978-3-319-30127-3.

    Article  Google Scholar 

  91. Yunus Khan TM, Soudagar MEM, Kanchan M, Afzal A, Banapurmath NR, Akram N, et al. Optimum location and influence of tilt angle on performance of solar PV panels. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09089-5.

    Article  Google Scholar 

  92. Awasthi A, Shukla AK, Murali Manohar SR, Dondariya C, Shukla KN, Porwal D, et al. Review on sun tracking technology in solar PV system. Energy Rep. 2020;6:392–405. https://doi.org/10.1016/j.egyr.2020.02.004.

    Article  Google Scholar 

  93. Maliani OD, Bekkaoui A, Baali EH, Guissi K, El Fellah Y, Errais R. Investigation on novel design of solar still coupled with two axis solar tracking system. Appl Therm Eng. 2020;172:115144. https://doi.org/10.1016/j.applthermaleng.2020.115144.

    Article  Google Scholar 

  94. Abdelghani-Idrissi MA, Khalfallaoui S, Seguin D, Vernières-Hassimi L, Leveneur S. Solar tracker for enhancement of the thermal efficiency of solar water heating system. Renew Energy. 2018;119:79–94.

    Article  CAS  Google Scholar 

  95. Abdallah S, Badran OO. Sun tracking system for productivity enhancement of solar still. Desalination. 2008;220:669–76.

    Article  CAS  Google Scholar 

  96. Khalifa AJN, Al-Mutawalli SS. Effect of two-axis sun tracking on the performance of compound parabolic concentrators. Energy Convers Manag. 1998;39:1073–9.

    Article  CAS  Google Scholar 

  97. Abdallah S, Nijmeh S. Two axes sun tracking system with PLC control. Energy Convers Manag. 2004;45:1931–9.

    Article  Google Scholar 

  98. Abdallah S, Badran O, Abu-Khader MM. Performance evaluation of a modified design of a single slope solar still. Desalination. 2008;219:222–30.

    Article  CAS  Google Scholar 

  99. Li H, Yan Z, Li Y, Hong W. Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges. Water Res. 2020;2020:115770.

    Article  Google Scholar 

  100. Akash BA, Mohsen MS, Nayfeh W. Experimental study of the basin type solar still under local climate conditions. Energy Convers Manag. 2000;41:883–90.

    Article  Google Scholar 

  101. Hoque A, Abir AH, Paul SK. Solar still for saline water desalination for low-income coastal areas. Appl Water Sci. 2019;9:1–8. https://doi.org/10.1007/s13201-019-0986-9.

    Article  CAS  Google Scholar 

  102. Shirsath GB, Pala RGS, Muralidhar K, Khandekar S. Effect of salinity and water depth on the performance of doubly inclined solar still. Desalin Water Treat. 2018;124:72–87.

    Article  CAS  Google Scholar 

  103. Mahdi JT, Smith BE, Sharif AO. An experimental wick-type solar still system: design and construction. Desalination. 2011;267:233–8.

    Article  CAS  Google Scholar 

  104. Rai SN, Dutt DK, Tiwari GN. Some experimental studies of a single basin solar still. Energy Convers Manag. 1990;30:149–53.

    Article  Google Scholar 

  105. Nikam KC, Kumar R, Jilte R. Thermodynamic modeling and performance evaluation of a supercritical coal-fired power plant situated in Western India. Energy Sources Part A Recover Util Environ Eff. 2020. https://doi.org/10.1080/15567036.2020.1806410.

    Article  Google Scholar 

  106. Tabrizi FF, Dashtban M, Moghaddam H, Razzaghi K. Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still. Desalination. 2010;260:239–47.

    Article  CAS  Google Scholar 

  107. Kerfah R, Belkacem Z, Filali EG, Abdelhamid T. Effect of climatic and operational parameters on the performance of an indirect solar still. Int J Sustain Energy. 2015;34:578–93.

    Article  Google Scholar 

  108. Suneja S, Tiwari GN. Effect of water flow on internal heat transfer solar distillation. Energy Convers Manag. 1999;40:509–18.

    Article  CAS  Google Scholar 

  109. Sarafraz MM, Tlili I, Baseer MA, Safaei MR. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: experimental assessment and efficiency improvement. Appl Sci. 2019;9(9):1877. https://doi.org/10.3390/app9091877.

    Article  CAS  Google Scholar 

  110. Cooper PI. Some factors affecting the absorption of solar radiation in solar stills. Sol Energy. 1972;13:373–81.

    Article  Google Scholar 

  111. Sodha MS, Kumar A, Tiwari GN, Pandey GC. Effects of dye on the performance of a solar still. Appl Energy. 1980;7:147–62.

    Article  CAS  Google Scholar 

  112. Pandey GC. Effect of dye on the performance of a double basin solar still. Int J Energy Res. 1983;7:327–32.

    Article  CAS  Google Scholar 

  113. Rajvanshi AK. Effect of various dyes on solar distillation. Sol Energy. 1981;27:51–65.

    Article  Google Scholar 

  114. Ahmadi MH, Baghban A, Sadeghzadeh M, Zamen M, Mosavi A, Shamshirband S, et al. Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng Appl Comput Fluid Mech. 2020;14:545–65. https://doi.org/10.1080/19942060.2020.1734094.

    Article  Google Scholar 

  115. Muthu Manokar A, Kalidasa Murugavel K, Esakkimuthu G. Different parameters affecting the rate of evaporation and condensation on passive solar still: a review. Renew Sustain Energy Rev. 2014;38:309–22.

    Article  Google Scholar 

  116. Al-harahsheh M, Abu-Arabi M, Mousa H, Alzghoul Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl Therm Eng. 2018;128:1030–40. https://doi.org/10.1016/j.applthermaleng.2017.09.073.

    Article  Google Scholar 

  117. Velmurugan V, Srithar K. Solar stills integrated with a mini solar pond; analytical simulation and experimental validation. Desalination. 2007;216:232–41.

    Article  CAS  Google Scholar 

  118. Badran OO, Al-Tahaineh HA. The effect of coupling a flat-plate collector on the solar still productivity. Desalination. 2005;183:137–42.

    Article  CAS  Google Scholar 

  119. Velmurugan V, Pandiarajan S, Guruparan P, Subramanian LH, Prabaharan CD, Srithar K. Integrated performance of stepped and single basin solar stills with mini solar pond. Desalination. 2009;249:902–9.

    Article  CAS  Google Scholar 

  120. Zhang L, Bhatti MM, Michaelides EE. Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model. Int J Numer Methods Heat Fluid Flow. 2020.

  121. Abd Elbar AR, Hassan H. Energy, exergy and environmental assessment of solar still with solar panel enhanced by porous material and saline water preheating. J Clean Prod. 2020;277:124175. https://doi.org/10.1016/j.jclepro.2020.124175.

    Article  Google Scholar 

  122. Subramanian RS, Kumaresan G, Ajith R, Sabarivasan U, Gowthamaan KK, Anudeep S. Performance analysis of modified solar still integrated with flat plate collector. In: Material Today Proceedings. Elsevier BV, 2020.

  123. Refalo P, Ghirlando R, Abela S. The use of a solar chimney and condensers to enhance the productivity of a solar still. Desalin Water Treat. 2016;57:23024–37.

    Article  CAS  Google Scholar 

  124. Jobrane M, Kopmeier A, Kahn A, Cauchie HM, Kharroubi A, Penny C. Internal and external improvements of wick type solar stills in different configurations for drinking water production: a review. Groundw Sustain Dev. 2021;2021:100519.

    Article  Google Scholar 

  125. Grosu L, Mathieu A, Rochelle P, Feidt M, Ahmadi MH, Sadeghzadeh M. Steady state operation exergy-based optimization for solar thermal collectors. Environ Prog Sustain Energy. 2020;39:1–8.

    Article  Google Scholar 

  126. Manikandan V, Shanmugasundaram K, Shanmugan S, Janarthanan B, Chandrasekaran J. Wick type solar stills: a review. Renew Sustain Energy Rev. 2013;20:322–35.

    Article  Google Scholar 

  127. Agrawal A, Rana RS, Srivastava PK. Application of jute cloth (natural fibre) to enhance the distillate output in solar distillation system. Mater Today Proc. 2018;5:4893–902. https://doi.org/10.1016/j.matpr.2017.12.066.

    Article  CAS  Google Scholar 

  128. Ahmed HM, Ibrahim GA. Performance evaluation of a conventional solar still with different types and layouts of wick materials. J Energy Technol Policy. 2016;6:5–14.

    Google Scholar 

  129. Saravanan A, Murugan M. Performance evaluation of square pyramid solar still with various vertical wick materials: an experimental approach. Therm Sci Eng. 2020;19:100581. https://doi.org/10.1016/j.tsep.2020.100581.

    Article  Google Scholar 

  130. Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.

    Article  CAS  Google Scholar 

  131. Akram N, Sadri R, Kazi SN, Zubir MNM, Ridha M, Ahmed W, et al. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim. 2020;139:1309–43.

    Article  CAS  Google Scholar 

  132. Akram N, Sadri R, Kazi SN, Ahmed SM, Zubir MNM, Ridha M, et al. An experimental investigation on the performance of a flat-plate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids. J Therm Anal Calorim. 2019;138:609–21. https://doi.org/10.1007/s10973-019-08153-4.

    Article  CAS  Google Scholar 

  133. Ben Halima H, Frikha N, Ben SR. Numerical investigation of a simple solar still coupled to a compression heat pump. Desalination. 2014;337:60–6. https://doi.org/10.1016/j.desal.2014.01.010.

    Article  CAS  Google Scholar 

  134. Shatat MIM, Mahkamov K. Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling. Renew Energy. 2010;35:52–61. https://doi.org/10.1016/j.renene.2009.06.022.

    Article  CAS  Google Scholar 

  135. Rahbar N, Esfahani JA. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination. 2012;284:55–61. https://doi.org/10.1016/j.desal.2011.08.036.

    Article  CAS  Google Scholar 

  136. Somwanshi A, Tiwari AK. Performance enhancement of a single basin solar still with flow of water from an air cooler on the cover. Desalination. 2014;352:92–102. https://doi.org/10.1016/j.desal.2014.08.011.

    Article  CAS  Google Scholar 

  137. Omara ZM, Abdullah AS, Kabeel AE, Essa FA. The cooling techniques of the solar stills’ glass covers: a review. Renew Sustain Energy Rev. 2017;78:176–93. https://doi.org/10.1016/j.rser.2017.04.085.

    Article  Google Scholar 

  138. Jathar LD, Ganesan S. Assessing the performance of concave type stepped solar still with nanoparticles and condensing cover cooling arrangement : an experimental approach. Groundw Sustain Dev. 2021;12:100539. https://doi.org/10.1016/j.gsd.2020.100539.

    Article  Google Scholar 

  139. Patel SK, Singh D, Devnani GL, Sinha S, Singh D. Potable water production via desalination technique using solar still integrated with partial cooling coil condenser. Sustain Energy Technol Assess. 2021;43:100927. https://doi.org/10.1016/j.seta.2020.100927.

    Article  Google Scholar 

  140. Kabeel AE, Abdelgaied M. Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover. Renew Energy. 2020;146:769–75.

    Article  CAS  Google Scholar 

  141. Nayi KH, Modi KV. Pyramid solar still: a comprehensive review. Renew Sustain Energy Rev. 2018;81:136–48.

    Article  Google Scholar 

  142. Al-Madhhachi H, Smaisim GF. Experimental and numerical investigations with environmental impacts of affordable square pyramid solar still. Sol Energy Elsevier Ltd. 2021;216:303–14.

    Google Scholar 

  143. Muthu Manokar A, Taamneh Y, Kabeel AE, Prince Winston D, Vijayabalan P, Balaji D, et al. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still: an experimental study. Groundw Sustain. 2020;10:100319. https://doi.org/10.1016/j.gsd.2019.100319.

    Article  Google Scholar 

  144. Modi KV, Nayi KH. Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still. Renew Energy. 2020;153:1307–19. https://doi.org/10.1016/j.renene.2020.02.095.

    Article  Google Scholar 

  145. Sharshir SW, Kandeal AW, Ismail M, Abdelaziz GB, Kabeel AE, Yang N. Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach. Appl Therm Eng. 2019;160:113997. https://doi.org/10.1016/j.applthermaleng.2019.113997.

    Article  CAS  Google Scholar 

  146. Kabeel AE. Performance of solar still with a concave wick evaporation surface. Energy. 2009;34:1504–9.

    Article  Google Scholar 

  147. Sathyamurthy R, Nagarajan PK, Kennady HJ, Ravikumar TS, Paulson V, Ahsan A. Enhancement of fresh water production on triangular pyramid solar still using phase change material as storage material. Front Heat Mass Transf. 2014;5:1–5.

    Article  Google Scholar 

  148. Arunkumar T, Jayaprakash R, Denkenberger D, Ahsan A, Okundamiya MS, Kumar S, et al. An experimental study on a hemispherical solar still. Desalination. 2012;286:342–8. https://doi.org/10.1016/j.desal.2011.11.047.

    Article  CAS  Google Scholar 

  149. Rashidi S, Abolfazli Esfahani J, Rahbar N. Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis. Sol Energy. 2017;153:41–50.

    Article  Google Scholar 

  150. Muftah AF, Sopian K, Alghoul MA. Performance of basin type stepped solar still enhanced with superior design concepts. Desalination. 2018;435:198–209.

    Article  CAS  Google Scholar 

  151. Kalita P, Borah S, Das D. Design and performance evaluation of a novel solar distillation unit. Desalination. 2017;416:65–75.

    Article  CAS  Google Scholar 

  152. Wassouf P, Peska T, Singh R, Akbarzadeh A. Novel and low cost designs of portable solar stills. Desalination. 2011;276:294–302.

    Article  CAS  Google Scholar 

  153. Kaushal AK, Mittal MK, Gangacharyulu D. Productivity correlation and economic analysis of floating wick basin type vertical multiple effect diffusion solar still with waste heat recovery. Desalination. 2017;423:95–103.

    Article  CAS  Google Scholar 

  154. Sarhaddi F, Farshchi Tabrizi F, Aghaei Zoori H, Mousavi SAHS. Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis. Energy Convers Manag. 2017;133:97–109.

    Article  CAS  Google Scholar 

  155. Pal P, Yadav P, Dev R, Singh D. Performance analysis of modified basin type double slope multi–wick solar still. Desalination. 2017;422:68–82.

    Article  CAS  Google Scholar 

  156. Radhwan AM. Transient performance of a stepped solar still with built-in latent heat thermal energy storage. Desalination. 2005;171:61–76.

    Article  CAS  Google Scholar 

  157. Panchal HN. performance analysis of different energy absorbing plates on solar stills. Iran J Energy Environ. 2011;2:297–301.

    Google Scholar 

  158. Kianifar A, Zeinali Heris S, Mahian O. Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy. 2012;38:31–6.

    Article  Google Scholar 

  159. Aburideh H, Deliou A, Abbad B, Alaoui F, Tassalit D, Tigrine Z. An experimental study of a solar still: Application on the sea water desalination of Fouka. Procedia Eng. 2012;33:475–84.

    Article  CAS  Google Scholar 

  160. Arunkumar T, Jayaprakash R, Prakash A, Suneesh PU, Karthik M, Kumar S. Study of thermo physical properties and an improvement in production of distillate yield in pyramid solar still with boosting mirror. Indian J Sci Technol. 2010;3:879–84.

    Article  CAS  Google Scholar 

  161. Mebarek B, Harmim A. Development and testing of a vertical solar still. Desalination. 2003;158:179.

    Article  Google Scholar 

  162. Prakash J, Kavathekar AK. Performance prediction of a regenerative solar still. Sol Wind Technol. 1986;3:119–25.

    Article  Google Scholar 

  163. El-Sebaii AA, Aboul-Enein S, Ramadan MRI, Khallaf AM. Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP). Desalination. 2011;280:183–90.

    Article  CAS  Google Scholar 

  164. Rahim NHA. Utilisation of new technique to improve the efficiency of horizontal solar desalination still. Desalination. 2001;138:121–8.

    Article  CAS  Google Scholar 

  165. Sakthivel M, Shanmugasundaram S, Alwarsamy T. An experimental study on a regenerative solar still with energy storage medium: jute cloth. Desalination. 2010;264:24–31.

    Article  CAS  Google Scholar 

  166. Ismail BI. Design and performance of a transportable hemispherical solar still. Renew Energy. 2009;34:145–50.

    Article  Google Scholar 

  167. Dimri V, Sarkar B, Singh U, Tiwari GN. Effect of condensing cover material on yield of an active solar still: an experimental validation. Desalination. 2008;227:178–89.

    Article  CAS  Google Scholar 

  168. Sodha MS, Kumar A, Tiwari GN, Tyagi RC. Simple multiple wick solar still: analysis and performance. Sol Energy. 1981;16:127–31.

    Article  Google Scholar 

  169. Ahsan A, Imteaz M, Rahman A, Yusuf B, Fukuhara T. Design, fabrication and performance analysis of an improved solar still. Desalination. 2012;292:105–12.

    Article  CAS  Google Scholar 

  170. Al-Hinai H, Al-Nassri MS, Jubran BA. Parametric investigation of a double-effect solar still in comparison with a single-effect solar still. Desalination. 2002;150:75–83.

    Article  CAS  Google Scholar 

  171. Mari EG, Colomer RPG, Blaise-Ombrecht CA. Performance analysis of a solar still integrated in a greenhouse. Desalination. 2007;203:435–43.

    Article  CAS  Google Scholar 

  172. Srivastava PK, Agrawal SK. Experimental and theoretical analysis of single sloped basin type solar still consisting of multiple low thermal inertia floating porous absorbers. Desalination. 2013;311:198–205.

    Article  CAS  Google Scholar 

  173. Cappelletti GM. An experiment with a plastic solar still. Desalination. 2002;142:221–7.

    Article  CAS  Google Scholar 

  174. Nishikawa H, Tsuchiya T, Narasaki Y, Kamiya I, Sato H. Triple effect evacuated solar still system for getting fresh water from seawater. Appl Therm Eng. 1998;18:1067–75.

    Article  CAS  Google Scholar 

  175. Khalifa AJN, Hamood AM. On the verification of the effect of water depth on the performance of basin type solar stills. Sol Energy. 2009;83:1312–21. https://doi.org/10.1016/j.solener.2009.04.006.

    Article  CAS  Google Scholar 

  176. Tiwari GN. Effect of water depth on daily yield of the still. Desalination. 1987;61:67–75.

    Article  CAS  Google Scholar 

  177. Tripathi R, Tiwari GN. Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Sol Energy. 2006;80:956–67.

    Article  CAS  Google Scholar 

  178. Al-Hayeka I, Badran OO. The effect of using different designs of solar stills on water distillation. Desalination. 2004;169:121–7.

    Article  Google Scholar 

  179. Tiwari AK, Tiwari GN. Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination. 2006;195:78–94.

    Article  CAS  Google Scholar 

  180. Kabeel AE, Sathyamurthy R, Sharshir SW, Muthumanokar A, Panchal H, Prakash N, et al. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. J Clean Prod. 2019;213:185–91.

    Article  CAS  Google Scholar 

  181. Feilizadeh M, Karimi Estahbanati MR, Ahsan A, Jafarpur K, Mersaghian A. Effects of water and basin depths in single basin solar stills: an experimental and theoretical study. Energy Convers Manag. 2016;122:174–81.

    Article  Google Scholar 

  182. Elango T, Kalidasa MK. The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination. 2015;359:82–91.

    Article  CAS  Google Scholar 

  183. Singh HN, Tiwari GN. Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination. 2004;168:145–50.

    Article  CAS  Google Scholar 

  184. Naim MM, Abd El Kawi MA. Non-conventional solar stills. Part 2. Non-conventional solar stills with energy storage element. Desalination. 2003;153:71–80.

    Article  CAS  Google Scholar 

  185. El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy. 2009;86:1187–95.

    Article  CAS  Google Scholar 

  186. Al-Hamadani AAF, Shukla SK. Water distillation using solar energy system with lauric acid as storage medium. Int J Energy Eng. 2012;1:1–8.

    Article  Google Scholar 

  187. Ravishankar S, Nagarajan PK, Vijayakumar D, Jawahar MK. Phase change material on augmentation of fresh water production using pyramid solar still. Int J Renew Energy Dev. 2013;2:1–15.

    Google Scholar 

  188. Rai AK, Sachan V. Experimental study of a tubular solar still with phase change material. Int J Mech Eng Technol. 2015;6:42–6.

    Google Scholar 

  189. Chaichan MT, Kazem HA. Using aluminium powder with PCM (paraffin wax) to enhance single slope solar water distiller productivity in Baghdad-Iraq winter weathers. Int J Renew Energy Res. 2015;5:251–7.

    Google Scholar 

  190. Asbik M, Ansari O, Bah A, Zari N, Mimet A, El-Ghetany H. Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM). Desalination. 2016;381:26–37.

    Article  CAS  Google Scholar 

  191. Somanchi NS, Sagi SLS, Kumar TA, Kakarlamudi SPD, Parik A. Modelling and analysis of single slope solar still at different water depth. Aquat Proc. 2015;4:1477–82.

    Article  Google Scholar 

  192. Gugulothu R, Somanchi NS, Vilasagarapu D, Banoth HB. Solar water distillation using three different phase change materials. Mater Today Proc. 2015;2:1868–75.

    Article  CAS  Google Scholar 

  193. Gugulothu R, Somanchi NS, Devi RSR, Banoth HB. Experimental investigations on performance evaluation of a single basin solar still using different energy absorbing materials. Aquat Proc. 2015;4:1483–91.

    Article  Google Scholar 

  194. Chaichan MT, Kazem HA. Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Sol Energy. 2018;164:370–81.

    Article  CAS  Google Scholar 

  195. Faegh M, Shafii MB. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination. 2017;409:128–35.

    Article  CAS  Google Scholar 

  196. Kabeel AE, Elkelawy M, Alm El Din H, Alghrubah A. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium. Energy Convers Manag. 2017;145:10–9.

    Article  CAS  Google Scholar 

  197. Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination. 2013;314:189–92.

    Article  CAS  Google Scholar 

  198. Arunkumar T, Kabeel AE. Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement. Desalination. 2017;414:46–50. https://doi.org/10.1016/j.desal.2017.03.035.

    Article  CAS  Google Scholar 

  199. Kabeel AE, Omara ZM, Essa FA. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers Manag. 2014;86:268–74. https://doi.org/10.1016/j.enconman.2014.05.050.

    Article  CAS  Google Scholar 

  200. Sathyamurthy R, Kabeel AE, El-Agouz ES, Rufus DS, Panchal H, Arunkumar T, et al. Experimental investigation on the effect of MgO and TiO2 nanoparticles in stepped solar still. Int J Energy Res. 2019;43:3295–305.

    Article  Google Scholar 

  201. Kabeel AE, Sathyamurthy R, Manokar AM, Sharshir SW, Essa FA, Elshiekh AH. Experimental study on tubular solar still using graphene oxide nano particles in phase change material (NPCM’s) for fresh water production. J Energy Storage. 2020;28:101204. https://doi.org/10.1016/j.est.2020.101204.

    Article  Google Scholar 

  202. Manoj Kumar P, Sudarvizhi D, Prakash KB, Anupradeepa AM, Boomiha Raj S, Shanmathi S, et al. Investigating a single slope solar still with a nano-phase change material. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2020.12.804.

    Article  Google Scholar 

  203. Sadeghi G, Nazari S. Retrofitting a thermoelectric-based solar still integrated with an evacuated tube collector utilizing an antibacterial-magnetic hybrid nanofluid. Desalination. 2021;500:114871.

    Article  CAS  Google Scholar 

  204. Subhedar DG, Chauhan KV, Patel K, Ramani BM. Performance improvement of a conventional single slope single basin passive solar still by integrating with nanofluid-based parabolic trough collector: an experimental study. Mater Today Proc. 2019;26:1478–81. https://doi.org/10.1016/j.matpr.2020.02.304.

    Article  CAS  Google Scholar 

  205. Madani AA, Zaki GM. Yield of solar stills with porous basins. Appl Energy. 1995;52:273–81.

    Article  Google Scholar 

  206. Fath HES, El-Sherbiny SM, Ghazy A. Transient analysis of a new humidification-dehumidification solar still. Desalination. 2003;155:187–203.

    Article  CAS  Google Scholar 

  207. Al-Karaghouli AA, Alnaser WE. Performances of single and double basin solar-stills. Appl Energy. 2004;78:347–54.

    Article  CAS  Google Scholar 

  208. El-Sebaii AA, Aboul-Enein S, El-Bialy E. Single basin solar still with baffle suspended absorber. Energy Convers Manag. 2000;41:661–75.

    Article  Google Scholar 

  209. ElSherbiny SM, Fath HES. Solar distillation under climatic conditions of Egypt. Renew Energy. 1993;3:61–5.

    Article  CAS  Google Scholar 

  210. Varol HS, Yazar A. A hybrid high efficiency single-basin solar still. Int J Energy Res. 1996;20:541–6.

    Article  Google Scholar 

  211. Nijmeh S, Odeh S, Akash B. Experimental and theoretical study of a single-basin solar sill in Jordan. Int Commun Heat Mass Transf. 2005;32:565–72.

    Article  CAS  Google Scholar 

  212. Al-hassan GA, Algarni SA. Exploring of water distillation by single solar still basins. Am J Clim Chang. 2013.

  213. Sahoo BB, Sahoo N, Mahanta P, Borbora L, Kalita P, Saha UK. Performance assessment of a solar still using blackened surface and thermocol insulation. Renew Energy. 2008;33:1703–8.

    Article  CAS  Google Scholar 

  214. Flendrig LM, Shah B, Subrahmaniam N, Ramakrishnan V. Low cost thermoformed solar still water purifier for D&E countries. Phys Chem Earth. 2009;34:50–4.

    Article  Google Scholar 

  215. Velmurugan V, Gopalakrishnan M, Raghu R, Srithar K. Single basin solar still with fin for enhancing productivity. Energy Convers Manag. 2008;49:2602–8.

    Article  Google Scholar 

  216. Panchal H, Shah PK. Investigation on solar stills having floating plates. Int J Energy Environ Eng. 2012;3:1–5.

    Article  Google Scholar 

  217. Fath HES, El-Samanoudy M, Fahmy K, Hassabou A. Thermal-economic analysis and comparison between pyramid-shaped and single-slope solar still configurations. Desalination. 2003;159:69–79.

    Article  CAS  Google Scholar 

  218. Abdul Elkader M. An investigation of the parameters involved in simple solar still with inclined yute. Renew Energy. 1998;14:333–8.

    Article  Google Scholar 

  219. Aybar HŞ, Assefi H. Simulation of a solar still to investigate water depth and glass angle. Desalin Water Treat. 2009;7:35–40.

    Article  Google Scholar 

  220. Meukam P, Njomo D, Gbane A, Toure S. Experimental optimization of a solar still: Application to alcohol distillation. Chem Eng Process Process Intensif. 2004;43:1569–77.

    Article  CAS  Google Scholar 

  221. Panchal HN, Shah PK. Effect of varying glass cover thickness on performance of solar still: in a winter climate conditions. Int J Renew Energy Res. 2011;1:212–23.

    Google Scholar 

  222. Morad MM, El-Maghawry HAM, Wasfy KI. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination. 2015;373:1–9.

    Article  CAS  Google Scholar 

  223. Muthu Manokar A, Prince WD. Comparative study of finned acrylic solar still and galvanised iron solar still. Mater Today Proc. 2017;4:8323–7.

    Article  CAS  Google Scholar 

  224. Begum HA, Yousuf MA, Rabbani KS. Effect of top cover material on productivity of solar distillation unit. Bangladesh J Med Phys. 2018;9:11–6.

    Article  Google Scholar 

  225. El-Swify ME, Metias MZ. Performance of double exposure solar still. Renew Energy. 2002;26:531–47.

    Article  Google Scholar 

  226. Omara ZM, Kabeel AE, Younes MM. Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers Manag. 2014;78:876–81.

    Article  Google Scholar 

  227. Karimi Estahbanati MR, Ahsan A, Feilizadeh M, Jafarpur K, Ashrafmansouri SS, Feilizadeh M. Theoretical and experimental investigation on internal reflectors in a single-slope solar still. Appl Energy. 2016;165:537–47.

    Article  Google Scholar 

  228. Omara ZM, Kabeel AE, Abdullah AS, Essa FA. Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination. 2016;381:111–6.

    Article  CAS  Google Scholar 

  229. Shanmugan S, Rajamohan P, Mutharasu D. Performance study on an acrylic mirror boosted solar distillation unit utilizing seawater. Desalination. 2008;230:281–7.

    Article  CAS  Google Scholar 

  230. Tanaka H, Nakatake Y. Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter. Sol Energy. 2009;83:785–9.

    Article  Google Scholar 

  231. Kumar BS, Kumar S, Jayaprakash R. Performance analysis of a “V” type solar still using a charcoal absorber and a boosting mirror. Desalination. 2008;229:217–30.

    Article  CAS  Google Scholar 

  232. Dev R, Abdul-Wahab SA, Tiwari GN. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Appl Energy. 2011;88:252–64.

    Article  CAS  Google Scholar 

  233. Al-Garni AZ. Effect of external reflectors on the productivity of a solar still during winter. J Energy Eng. 2014;140:1–7.

    Article  Google Scholar 

  234. El-Sebaii AA. Effect of wind speed on some designs of solar stills. Energy Convers Manag. 2000;41:523–38.

    Article  Google Scholar 

  235. Tanaka H. Tilted wick solar still with flat plate bottom reflector. Desalination. 2011;273:405–13.

    Article  CAS  Google Scholar 

  236. Tanaka H. A theoretical analysis of basin type solar still with flat plate external bottom reflector. Desalination. 2011;279:243–51.

    Article  CAS  Google Scholar 

  237. Khalifa AJN, Ibrahim HA. Effect of inclination of the external reflector of simple solar still in winter: an experimental investigation for different cover angles. Desalination. 2010;264:129–33.

    Article  CAS  Google Scholar 

  238. Monowe P, Masale M, Nijegorodov N, Vasilenko V. A portable single-basin solar still with an external reflecting booster and an outside condenser. Desalination. 2011;280:332–8.

    Article  CAS  Google Scholar 

  239. Boubekri M, Chaker A. Yield of an improved solar still: Numerical approach. Energy Proc. 2011;6:610–7.

    Article  Google Scholar 

  240. El-Samadony YAF, Abdullah AS, Omara ZM. Experimental study of stepped solar still integrated with reflectors and external condenser. Exp Heat Transf. 2015;28:392–404.

    Article  CAS  Google Scholar 

  241. Voropoulos K, Mathioulakis E, Belessiotis V. Experimental investigation of the behavior of a solar still coupled with hot water storage tank. Desalination. 2003;156:315–22.

    Article  CAS  Google Scholar 

  242. Al-Kharabsheh S, Goswami DY. Analysis of an innovative water desalination system using low-grade solar heat. Desalination. 2003;156:323–32.

    Article  CAS  Google Scholar 

  243. Dwivedi VK, Tiwari GN. Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination. 2010;250:49–55.

    Article  CAS  Google Scholar 

  244. Dev R, Tiwari GN. Annual performance of evacuated tubular collector integrated solar still. Desalin Water Treat. 2012;41:204–33.

    Article  CAS  Google Scholar 

  245. Al-Shabibi AM, Tahat M. Single slope solar water still with enhanced solar heating system. Recent Prog Desalination Environ Mar Outfall Syst. 2015;2015:25–34.

    Article  Google Scholar 

  246. Gupta B, Kumar A, Baredar PV. Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Front Mater. 2017;4:23.

    Article  Google Scholar 

  247. Ali HM. Effect of forced convection inside the solar. Energy Convers Mgmt. 1993;34:73–9.

    Article  CAS  Google Scholar 

  248. Yadav YP. Transient analysis of double-basin solar still integrated with collector. Desalination. 1989;71:151–64.

    Article  Google Scholar 

  249. Rajaseenivasan T, Tinnokesh AP, Kumar GR, Srithar K. Glass basin solar still with integrated preheated water supply: theoretical and experimental investigation. Desalination. 2016;398:214–21.

    Article  CAS  Google Scholar 

  250. Esfahani JA, Rahbar N, Lavvaf M. Utilization of thermoelectric cooling in a portable active solar still: an experimental study on winter days. Desalination. 2011;269:198–205.

    Article  CAS  Google Scholar 

  251. Panchal HN. Enhancement of distillate output of double basin solar still with vacuum tubes. J King Saud Univ Eng Sci. 2015;27:170–5. https://doi.org/10.1016/j.jksues.2013.06.007.

    Article  Google Scholar 

  252. Kumar RA, Esakkimuthu G, Murugavel KK. Performance enhancement of a single basin single slope solar still using agitation effect and external condenser. Desalination. 2016;399:198–202. https://doi.org/10.1016/j.desal.2016.09.006.

    Article  CAS  Google Scholar 

  253. Pounraj P, Prince Winston D, Kabeel AE, Praveen Kumar B, Manokar AM, Sathyamurthy R, et al. Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance. Energy Convers Manag. 2018;168:371–81. https://doi.org/10.1016/j.enconman.2018.05.011.

    Article  Google Scholar 

  254. Abdullah AS, Essa FA, Omara ZM, Rashid Y, Hadj-Taieb L, Abdelaziz GB, et al. Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study. Energy Convers Manag. 2019;199:112024. https://doi.org/10.1016/j.enconman.2019.112024.

    Article  Google Scholar 

  255. Kabeel AE, Abdelgaied M, Mahgoub M. The performance of a modified solar still using hot air injection and PCM. Desalination. 2016;379:102–7. https://doi.org/10.1016/j.desal.2015.11.007.

    Article  CAS  Google Scholar 

  256. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  257. Khalifa AJN, Hamood AM. Effect of insulation thickness on the productivity of basin type solar stills: an experimental verification under local climate. Energy Convers Manag. 2009;50:2457–61. https://doi.org/10.1016/j.enconman.2009.06.007.

    Article  Google Scholar 

  258. Omara ZM, Kabeel AE, Abdullah AS. A review of solar still performance with reflectors. Renew Sustain Energy Rev. 2017;68:638–49. https://doi.org/10.1016/j.rser.2016.10.031.

    Article  Google Scholar 

  259. Tanaka H. Tilted wick solar still with flat plate bottom reflector: numerical analysis for a case with a gap between them. J Fundam Renew Energy Appl. 2015;5:100075.

    Article  Google Scholar 

  260. Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination. 2009;249:130–4.

    Article  CAS  Google Scholar 

  261. Arunkumar T, Raj K, Rufuss DDW, Denkenberger D, Tingting G, Xuan L, et al. A review of efficient high productivity solar stills. Renew Sustain Energy Rev. 2019;101:197–220. https://doi.org/10.1016/j.rser.2018.11.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Mechanical Engineering, Vel Tech Rangarajan & Dr. Sagunthala R & D Institute of Science and Technology, Chennai, and the Mechanical Engineering Department, Imperial College of Engineering and Research, Pune, for providing the facilities and support. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for the support they received through research groups program under grant number (R.G.P 2/138/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Goodarzi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jathar, L.D., Ganesan, S., Shahapurkar, K. et al. Effect of various factors and diverse approaches to enhance the performance of solar stills: a comprehensive review. J Therm Anal Calorim 147, 4491–4522 (2022). https://doi.org/10.1007/s10973-021-10826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10826-y

Keywords

Navigation