Skip to main content
Log in

Determination of the optimal discharge pressure of the transcritical CO2 heat pump cycles for heating and cooling performances based on new correlation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Considering the expansion of heat pump systems as one of the environment-friendly cycles, increasing these cycles' efficiency is significant. This paper is a comprehensive study of transcritical CO2 heat pump cycles in heating and cooling modes covering a range of ambient temperatures from −15 to 30 °C along with the range of 25 to 45 °C in cases of gas-cooler exit temperatures. In this study, the ambient temperature of 0 °C and gas-cooler exit temperatures of 30 and 35 °C were examined, and the best Coefficient of Performance and exergy efficiency were obtained at a discharge pressure of 7496 and 8896 kPa, respectively. The ambient temperature of 30 °C and gas-cooler exit temperatures of 45 and 50 °C were investigated, and the discharge pressure of 10,938  and 12,363 kPa have the highest Coefficient of Performance and exergy efficiency, respectively. The results show that the gas-cooler temperature positively affects the optimum discharge pressure. In conclusion, an equation for Optimum Discharge Pressure is presented as a general correlation to obtain this parameter for the heating and cooling modes in these commonly used cycles. This equation also presented with a deviation less than 5.66% of the optimum discharge pressure obtained from energy and exergy analysis. Therefore, it has been identified as an acceptable criterion in these cycles. Furthermore, by examining the amount of exergy destruction of these cycles' most essential components, it becomes clear that they are the most exergy destruction related to the compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\mathop {Ex}\limits^{ \cdot }\) :

Exergy rate (kW)

h:

Enthalpy (kJ kg1)

\(\mathop m\limits^{ \cdot }\) :

Mass flow rate (kg s1)

P:

Pressure (kPa)

\(\mathop Q\limits^{ \cdot }\) :

Heat transfer (kW)

S:

Specific entropy (kJ kg1 K1)

T:

Temperature (K)

\(W\) :

Power consumption (kW)

\(\eta\) :

Efficiency

0:

Ambient

1–4:

State points in Fig. 1

a:

Each point in Fig. 1

mp:

Compressor

dest:

Destruction

eva:

Evaporator

gc:

Gas-cooler

is:

Isentropic

COP:

Coefficient of performance

ODP:

Optimal Discharge Pressure

References

  1. Akbari M, Bidi M, Najafi A, Ahmadi M. Energy exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant zero liquid discharge systems. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08463-7.

    Article  Google Scholar 

  2. Shadloo MS. Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes. Int J Num Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-09-2020-0555

  3. Reilly A, Kinnane O. The impact of thermal mass on building energy consumption. Appl Energy. 2017;198:108–21. https://doi.org/10.1016/j.apenergy.2017.04.024.

    Article  Google Scholar 

  4. Amiri Rad E, Maddah S, Mohammadi S. Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses. Renew Energy. 2020;151:342–54. https://doi.org/10.1016/j.renene.2019.11.024.

    Article  Google Scholar 

  5. Patel B, Kachhwaha SS, Modi B. Thermodynamic modelling and parametric study of a two stage compression-absorption refrigeration system for ice cream hardening plant. Energy Procedia. 2017;109:190–202. https://doi.org/10.1016/j.egypro.2017.03.091.

    Article  CAS  Google Scholar 

  6. Homod RZ, Almusaed A, Almssad A, Jaafar MK, Goodarzi M, Sahari KS. Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: a case study in Basra city. Iraq J Energy Storage. 2020;5:101975.

    Google Scholar 

  7. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2020;11:1–25.

    Google Scholar 

  8. Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S, Shadloo MS, Oztop HF. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy. 2020;15(211):118698.

    Article  Google Scholar 

  9. Rad EA, Maddah S. Entropic optimization of the economizer’s pressure in a heat pump cycle integrated with a flash-tank and vapor-injection system. Int J Refrig. 2019;97:56–66. https://doi.org/10.1016/j.ijrefrig.2018.09.018.

    Article  CAS  Google Scholar 

  10. Açıkkalp E, Ahmadi M. Performance evaluation of PEM fuel cell- chemical heat pump - absorption refrigerator hybrid system. Int J Ambient Energy. 2020. https://doi.org/10.1080/01430750.2020.1712238.

    Article  Google Scholar 

  11. Shahid A, Huang HL, Khalique CM, Bhatti MM. Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate. J Therm Anal Calorim. 2020;3:1–2.

    Google Scholar 

  12. Arain MB, Bhatti MM, Zeeshan A, Saeed T, Hobiny A. Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Math Probl Eng. 2020;1:2020.

    Google Scholar 

  13. Bhatti MM, Abdelsalam SI. Thermodynamic entropy of a magnetized Ree-Eyring particle-fluid motion with irreversibility process: a mathematical paradigm. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik. 2020;2:e202000186.

    Google Scholar 

  14. Ali Z, Zeeshan A, Bhatti MM, Hobiny A, Saeed T. Insight into the dynamics of Oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab J Sci Eng. 2021;9:1.

    Google Scholar 

  15. Zhang L, Bhatti MM, Michaelides EE. Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model. Int J Num Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-09-2020-0566.

    Article  Google Scholar 

  16. Bhatti MM, Phali L, Khalique CM. Heat transfer effects on electro-magnetohydrodynamic Carreau fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium. Arch Appl Mech. 2021;7:1–3.

    Google Scholar 

  17. Bellos E, Tzivanidis C. Enhancing the performance of a CO2 refrigeration system with the use of an absorption chiller. Int J Refrig. 2019;1(108):37–52.

    Article  Google Scholar 

  18. Purohit N, Gullo P, Dasgupta MS. Comparative assessment of low-GWP based refrigerating plants operating in hot climates. Energy Procedia. 2017;1(109):138–45.

    Article  Google Scholar 

  19. Bellos E, Tzivanidis C. A comparative study of CO2 refrigeration systems. Energy Conv Manage: X. 2019;1(1):100002.

    CAS  Google Scholar 

  20. Gullo P. Innovative fully integrated transcritical R744 refrigeration systems for a HFC-free future of supermarkets in warm and hot climates. Int J Refrig. 2019;1(108):283–310.

    Article  Google Scholar 

  21. Gullo P, Tsamos KM, Hafner A, Banasiak K, Yunting TG, Tassou SA. Crossing CO2 equator with the aid of multi-ejector concept: a comprehensive energy and environmental comparative study. Energy. 2018;1(164):236–63.

    Article  Google Scholar 

  22. Fazelpour F, Morosuk T. Exergoeconomic analysis of carbon dioxide transcritical refrigeration machines. Int J Refrig. 2014;38:128–39. https://doi.org/10.1016/j.ijrefrig.2013.09.016.

    Article  CAS  Google Scholar 

  23. Khanmohammadi S, Goodarzi M, Khanmohammadi S, Ganjehsarabi H. Thermoeconomic modeling and multi-objective evolutionary-based optimization of a modified transcritical CO2 refrigeration cycle. Therm Sci Eng Prog. 2018;5:86–96. https://doi.org/10.1016/j.tsep.2017.10.007.

    Article  Google Scholar 

  24. Liu X, Liu C, Zhang Z, Chen L, Hou Y. Experimental study on the performance of water source trans-critical CO2 heat pump water heater. Energies. 2017. https://doi.org/10.3390/en10060810.

    Article  Google Scholar 

  25. Song Y, Li D, Cao F, Wang X. Investigation of the optimal intermediate water temperature in a combined r134a and transcritical CO2 heat pump for space heating. Int J Refrig. 2017;79:10–24. https://doi.org/10.1016/j.ijrefrig.2017.04.018.

    Article  CAS  Google Scholar 

  26. Yang D, Song Y, Cao F, Jin L, Wang X. Theoretical and experimental investigation of a combined R134a and transcritical CO2 heat pump for space heating. Int J Refrig. 2016;72:156–70. https://doi.org/10.1016/j.ijrefrig.2016.07.016.

    Article  CAS  Google Scholar 

  27. Nguyen MQ, Shadloo MS, Hadjadj A, Lebon B, Peixinho J. Perturbation threshold and hysteresis associated with the transition to turbulence in sudden expansion pipe flow. Int J Heat Fluid Flow. 2019;1(76):187–96.

    Article  Google Scholar 

  28. Song Y, Cao F. The evaluation of the optimal medium temperature in a space heating used transcritical air-source CO2 heat pump with an R134a subcooling device. Energy Convers Manag. 2018;166:409–23. https://doi.org/10.1016/j.enconman.2018.04.052.

    Article  CAS  Google Scholar 

  29. Song Y, Cao F. The evaluation of optimal discharge pressure in a water-precooler-based transcritical CO2 heat pump system. Appl Therm Eng. 2018;131:8–18. https://doi.org/10.1016/j.applthermaleng.2017.11.092.

    Article  CAS  Google Scholar 

  30. Joneydi Shariatzadeh O, Abolhassani SS, Rahmani M, Ziaee Nejad M. Comparison of transcritical CO2 refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: exergy and energy points of view. Appl Therm Eng. 2016;93:779–87. https://doi.org/10.1016/j.applthermaleng.2015.09.017.

    Article  CAS  Google Scholar 

  31. Liu F, Groll EA, Ren J. Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system. Appl Therm Eng. 2016;98:1061–9. https://doi.org/10.1016/j.applthermaleng.2015.12.017.

    Article  CAS  Google Scholar 

  32. Bai T, Yu J, Yan G. Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system. Energy Convers Manag. 2016;126:850–61. https://doi.org/10.1016/j.enconman.2016.08.057.

    Article  CAS  Google Scholar 

  33. Piquet A, Zebiri B, Hadjadj A, Shadloo MS. A parallel high-order compressible flows solver with domain decomposition method in the generalized curvilinear coordinates system. Int J Numer Methods Heat & Fluid Flow. 2019;30(1):2–38. https://doi.org/10.1108/HFF-01-2019-0048

  34. Atyabi SA, Afshari E, Wongwises S, Yan WM, Hadjadj A, Shadloo MS. Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances. Energy. 2019;15(179):490–501.

    Article  Google Scholar 

  35. Ahmadi M, Mehrpooya M, Sameti M. Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump. Energy Convers Manag. 2015;90:175–83. https://doi.org/10.1016/j.enconman.2014.11.021.

    Article  Google Scholar 

  36. Ahmadi MH, Ahmadi MA, Bayat R, Ashouri M, Feidt M. Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Convers Manag. 2015;91:315–22. https://doi.org/10.1016/J.ENCONMAN.2014.12.006.

    Article  Google Scholar 

  37. Shadloo MS, Rahmat A, Karimipour A, Wongwises S. Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J Energy Resour Technol. 2020. https://doi.org/10.1115/1.4047593.

    Article  Google Scholar 

  38. Ahmadi MH, Ahmadi M-A, Pourfayaz F, Bidi M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Convers Manag. 2016;110:260–7. https://doi.org/10.1016/J.ENCONMAN.2015.12.028.

    Article  Google Scholar 

  39. Chahartaghi M, Kalami M, Ahmadi M, Kumar R, Jilte R. Energy and exergy analyses and thermo-economic optimization of geothermal heat pump for domestic water heating. Int J Low-Carbon Technol. 2019. https://doi.org/10.1093/ijlct/cty060.

    Article  Google Scholar 

  40. Sarkar J, Bhattacharyya S, Gopal MR. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int J Refrig. 2004;27:830–8. https://doi.org/10.1016/j.ijrefrig.2004.03.006.

    Article  CAS  Google Scholar 

  41. Ahmadi G, Toghraie D, Akbari O. Energy, exergy and environmental (3E) analysis of the existing CHP system in a petrochemical plant. Renew Sustain Energy Rev. 2019;1(99):234–42.

    Article  Google Scholar 

  42. Deymi-Dashtebayaz M, Maddah S, Fallahi E. Thermo-economic-environmental optimization of injection mass flow rate in the two-stage compression refrigeration cycle Case study: mobarakeh steel company in Isfahan. Iran Int J Refrig. 2019;106:7–17. https://doi.org/10.1016/j.ijrefrig.2019.06.020.

    Article  Google Scholar 

  43. Toghyani S, Afshari E, Baniasadi E, Shadloo MS. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system. Renew Energy. 2016;102:904–21. https://doi.org/10.1016/j.applthermaleng.2016.03.178.

    Article  Google Scholar 

  44. Akbulut U, Utlu Z, Kincay O. Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system. Energy. 2016;107:502–22.

    Article  Google Scholar 

  45. Maddah S, Goodarzi M, Safaei MR. Comparative study of the performance of air and geothermal sources of heat pumps cycle operating with various refrigerants and vapor injection. Alexandria Eng J. 2020;59:4037–47. https://doi.org/10.1016/j.aej.2020.07.009.

    Article  Google Scholar 

  46. Richter MR, Song SM, Yin JM, Kim MH, Bullard CW, Hrnjak PS. Experimental results of transcritical CO2 heat pump for residential application. Energy. 2003;28:1005–19. https://doi.org/10.1016/S0360-5442(03)00065-3.

    Article  CAS  Google Scholar 

  47. Maddah S, Deymi-Dashtebayaz M, Maddah O. 4E analysis of thermal recovery potential of industrial wastewater in heat pumps: an invisible energy resource from the iranian casting industry sector. J Clean Prod. 2020;265:121824. https://doi.org/10.1016/j.jclepro.2020.121824.

    Article  Google Scholar 

  48. Deymi-Dashtebayaz M, Maddah S, Goodarzi M, Maddah O. Investigation of the effect of using various HFC refrigerants in geothermal heat pump with residential heating applications. J Therm Anal Calorim. 2020;141:361–72. https://doi.org/10.1007/s10973-020-09539-5.

    Article  CAS  Google Scholar 

  49. Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Appl Therm Eng. 2000;20:831–41. https://doi.org/10.1016/S1359-4311(99)00070-8.

    Article  CAS  Google Scholar 

  50. Chen Y, Gu J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. Int J Refrig. 2005;28:1238–49. https://doi.org/10.1016/j.ijrefrig.2005.08.009.

    Article  CAS  Google Scholar 

  51. Qi PC, He YL, Wang XL, Meng XZ. Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater. Appl Therm Eng. 2013;56:120–5. https://doi.org/10.1016/j.applthermaleng.2013.03.045.

    Article  CAS  Google Scholar 

  52. Kim SC, Won JP, Kim MS. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles. Appl Therm Eng. 2009;29:2408–16. https://doi.org/10.1016/j.applthermaleng.2008.12.017.

    Article  CAS  Google Scholar 

  53. Kauf F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int J Therm Sci. 1999;38:325–30. https://doi.org/10.1016/S1290-0729(99)80098-2.

    Article  CAS  Google Scholar 

  54. Okasha A, Müller N. Simulation and performance correlation for transcritical CO2 heat pump cycle, international refrigeration and air conditioning conference, 2018: Paper 2056. https://docs.lib.purdue.edu/iracc/2056.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddah, S., Safaei, M.R. Determination of the optimal discharge pressure of the transcritical CO2 heat pump cycles for heating and cooling performances based on new correlation. J Therm Anal Calorim 145, 1537–1546 (2021). https://doi.org/10.1007/s10973-021-10723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10723-4

Keywords

Navigation