Skip to main content
Log in

Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A hydromagnetic transverse flow of an Oldroyd-B-type liquid with a heat flux of the Cattaneo–Christov model with variable thickness has been analyzed. Consider additional impacts of thermal conductivity as well as heat generation. Governing equations were transmitted into a set of nonlinear ordinary differential equations using similarity conversion, and then, numerical solution was evaluated using the procedure Runge–Kutta–Fehlberg. The physical response related to velocity and temperature is investigated computationally. The outcomes also show that the momentum boundary-layer thickness increases the values of magnetic field strength, but the reverse trend is observed for the thermal boundary layer. Impacts of retardation and relaxation time effects are quite the opposite of the temperature field. The obtained computations are useful in transport phenomena which are involving hydromagnetic rheological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B 0 :

Magnetic field strength (N m−1 A−1)

B :

Applied magnetic field (N m−1 A−1)

b :

Positive constant (s−1)

U w :

Stretching velocity (ms−1)

T w :

Temperature of fluid at the wall (K)

T :

Ambient fluid temperature (K)

x 1x 2 :

Coordinate axis (m)

T :

Temperature (K)

n :

Power law index

G :

Dimensionless velocity

M :

Magnetic parameter

C p :

Heat capacity (J kg−1 K)

U 0 :

Reference velocity (s−1)

k :

Ambient fluid thermal conductivity

Q :

Heat generation/absorption coefficient (J kg−3 K−1 s−1)

k :

Thermal conductivity (Wm−1 K−1)

Pr:

Prandtl number

q w :

Wall heat flux (Wm−2)

\( Cf_{{{\rm x}_{1} }} \) :

Skin friction coefficient

\( {\text{Nu}}_{{{\rm x}_{1} }} \) :

Local Nusselt number

\( {\text{Re}}_{{{\rm x}_{1} }} \) :

Local Reynolds number

ξ 1ξ 2 :

Velocity components (ms−1)

ν :

Kinematic viscosity (m2 s−1)

λ 1 :

Relaxation time (s)

λ 2 :

Retardation time (s)

η :

Similarity variable

τ w :

Wall shear stress

β 1β 2 :

Deborah numbers

δ :

Heat generation/absorption parameter

\( {{\Theta }} \) :

Dimensionless temperature

\( \gamma \) :

Thermal relaxation parameter

ρ :

Density of the fluid (kg m−3)

σ :

Electrical conductivity (Sm−1)

∞:

Condition at the free stream

w :

Condition at the wall/surface

References

  1. Hayat T, Nadeem S. Aspects of developed heat and mass flux models on 3D flow of Eyring–Powell fluid. Res Phys. 2017;7:3910–7.

    Google Scholar 

  2. Ellahi R, Raza M, Vafai K. Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math Comput Model. 2012;55:1876–91.

    Google Scholar 

  3. Elbashbeshy EMA, Emam TG, Abdel-Wahed MS. Three-dimensional flow over a stretching surface with thermal radiation and heat generation in the presence of chemical reaction and suction/injection. Int J Energy Technol. 2011;16:1–8.

    Google Scholar 

  4. Nadeem S, Hayat T, Malik MY, Rajput SA. Thermal radiations effects on the flow by an exponentially stretching surface: a series solution. Z Naturforschung. 2010;65:1–9.

    Google Scholar 

  5. Shenoy AV. Non-Newtonian fluid heat transfer in porous media. Adv Heat Transf. 1994;24:101–90.

    Google Scholar 

  6. Fourier JBJ. Theorieanalytique De Lachaleur; Paris: 1822.

  7. Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena. 1948;3:83–101.

    Google Scholar 

  8. Christov CI. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mech Res Commun. 2009;36:481–6.

    Google Scholar 

  9. Straughan B. Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf. 2010;53:95–8.

    Google Scholar 

  10. Tibullo V, Zampoli V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun. 2011;38:77–99.

    Google Scholar 

  11. Hayat T, Khan WA, AlsaediIjaz A, Ayub M, Ijaz Khan M. Stretched flow of Oldroyd fluid with Cattaneo–Christov heat flux. Res Phys. 2017;7:2470–6.

    Google Scholar 

  12. Hayat T, Ullah I, Muhammad T, Alsaedi A. Thermal and solutal stratification in mixed convection three-dimensional flow of an Oldroyd-B nanofluid. Res Phys. 2017;7:3797–805.

    Google Scholar 

  13. Hafeez, A., Khan, M., Ahmed, J. Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo–Christov heat flux theory. J Therm Anal Calorim. 2020;1–11.

  14. Gireesha BJ, Ganesh Kumar K, Ramesh GK, Prasannakumara BC. Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink. Res Phys. 2018;9:1555–63.

    Google Scholar 

  15. Gangadhar K, Suresh Kumar C, Ibrahim SM, Lorenzini G. Effect of viscous dissipation on upper-convected Maxwell fluid with Cattaneo–Christov heat flux model using spectral relaxation method. Defect Diffus Foru. 2018;388:146–57.

    Google Scholar 

  16. Menni Y, Ameur H, Inc M. Improvement of the performance of solar channels by using vortex generators and hydrogen fluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10239-3.

    Article  Google Scholar 

  17. Menni Y, Azzi A, Zidani C. Use of waisted triangular-shaped baffles to enhance heat transfer in a constant temperature surfaced rectangular channel. Int. J. Eng. Sci. Technol. 2017;12:3251–73.

    Google Scholar 

  18. Menni Y, Azzi A, Zidani C, Benyoucef B. Numerical analysis of turbulent forced—convection flow in a channel with staggered L-shaped baffles. J New Technol Mater. 2016;6:44–55.

    CAS  Google Scholar 

  19. Menni Y, Azzi A. Numerical analysis of thermal and aerodynamic fields in a channel with cascaded baffles. Period Polytech Mech Eng. 2018;62:16–25.

    Google Scholar 

  20. Menni Y, Azzi A, Didi F, Harmand S. Computational fluid dynamical analysis of new obstacle design and its impact on the heat transfer enhancement in a specific type of air flow geometry. Comput Therm Sci. 2018;10:421–47.

    Google Scholar 

  21. Ameur H, Menni Y. Laminar cooling of shear thinning fluids in horizontal and baffled tubes: effect of perforation in baffles. Therm Sci Eng Prog. 2019;14:100430.

    Google Scholar 

  22. Menni Y, Azzi A. Design and performance evaluation of air solar channels with diverse baffle structures. Comput Therm Sci. 2018;10:225–49.

    Google Scholar 

  23. Selimefendigil F, Oztop HF. MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel. Int J Mech Sci. 2019;157–158:726–40.

    Google Scholar 

  24. Selimefendigil F, Oztop HF. Combined effects of double rotating cones and magnetic field on the mixed convection of nanofluid in a porous 3D U-bend. Int Commun Heat Mass. 2020;116:104703.

    CAS  Google Scholar 

  25. El-Zahar ER, Rashad AM, Seddek LF. Impacts of viscous dissipation and Brownian motion on Jeffrey nanofluid flow over an unsteady stretching surface with thermophoresis. Symmetry. 2020;12:1450.

    CAS  Google Scholar 

  26. Selimefendigil F, Oztop HF. Effects of local curvature and magnetic field on forced convection in a layered partly porous channel with area expansion. Int J Mech Sci. 2020;179:105696.

    Google Scholar 

  27. Rashad AM. Unsteady nanofluid flow over an inclined stretching surface with convective boundary condition and anisotropic slip impact. Int J Heat Technol. 2017;35:82–90.

    Google Scholar 

  28. Subbarayudu K, Suneetha S, Bala Anki Reddy P, Rashad AM. Framing the activation energy and binary chemical reaction on CNT’s with Cattaneo–Christov heat diffusion on Maxwell nanofluid in the presence of nonlinear thermal radiation. Arab J Sci Eng. 2019;44:10313–25.

    CAS  Google Scholar 

  29. El-Zahar ER, Rashad AM, Seddek LF. The impact of sinusoidal surface temperature on the natural convective flow of a ferrofluid along a vertical plate. Mathematics. 2019;7:1014.

    Google Scholar 

  30. Reddy SRR, Bala Anki Reddy P, Rashad AM. Activation energy impact on chemically reacting Eyring–Powell nanofluid flow over a stretching cylinder. Arab J Sci Eng. 2020;45:5227–42.

    CAS  Google Scholar 

  31. Khan W, Idress M, Gul T, Khan MA, Bonyah E. Three non-Newtonian fluids flow considering thin film over an unsteady stretching surface with variable fluid properties. Adv Mech Eng. 2018;10:1–17.

    Google Scholar 

  32. Mehmood R, Rana S, Nadeem S. Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating. Res Phys. 2018;8:686–93.

    Google Scholar 

  33. Iqbal K, Ahmed J, Khan M, Ahmad L, Alghamdi M. Magnetohydrodynamic thin film deposition of Carreau nanofluid over an unsteady stretching surface. Appl Phys A. 2020;126:105.

    CAS  Google Scholar 

  34. Eid MR. Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation. J Mol Liq. 2016;220:718–25.

    CAS  Google Scholar 

  35. Vajravelu K, Prasad KV, Chiu-On N, Hanumesh V. MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid properties and transpiration. Int J Mech Mater Eng. 2017;12:9.

    Google Scholar 

  36. Shit GC, Mukherjee S. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects. Appl Math Mech. 2019;40:1269–84.

    Google Scholar 

  37. Shah Z, Alzahrani EO, Alghamdi W, Ullah MZ, Influences of electrical MHD and Hall current on squeezing nanofluid flow inside rotating porous plates with viscous and joule dissipation effects. J Therm Anal Calorim. 2020;140:1215–27.

  38. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int J Therm Sci. 2017;111:274–88.

    CAS  Google Scholar 

  39. Daniel YS, Aziz ZA, Ismail Z, Salah F. Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness. Alex Eng J. 2018;57:2187–97.

    Google Scholar 

  40. Hayat T, Khan WA, Abbas SZ, Nadeem S, Ahmad S. Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Appl Nanosci. 2020:1–9.

  41. Mondal H, Almakki M, Sibanda P. Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation. J Comput Des Eng. 2019;6:657–65.

    Google Scholar 

  42. Waqas H, Imran M, Muhammad T, Sait SM, Ellahi R. Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J Therm Anal Calorim. 2020;1–17.

  43. Venkata Subba Rao M, Gangadhar K, Varma PLN. A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy. Indian J Phys. 2018;92:1577–88.

    CAS  Google Scholar 

  44. Sobhana Babu PR, Venkata Subba Rao M, Gangadhar K. Boundary layer flow of radioactive non-Newtonian nanofluid embedded in a porous medium over a stretched sheet using the spectral relaxation method. Mater. Today Proc. 2019;19:2672–80.

  45. Gangadhar K, Narasimharao NSLV, Satyanarayana B. Thermal diffusion and viscous dissipation effects on magnetohydrodynamic heat and mass filled with TiO2 and Al2O3 water based nanofluids. Comput Therm Sci. 2019;11:523–39.

    Google Scholar 

  46. Rashad AM. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge. J Magn Magn Mater. 2017;422:25–31.

    CAS  Google Scholar 

  47. Ganesh Kumar K, Ramesh GK, Gireesha BJ, Rashad AM. On stretched magnetic flow of Carreau nanofluid with slip effects and nonlinear thermal radiation. Nonlinear Eng. 2019;8:340–9.

    Google Scholar 

  48. Reddy SRR, Bala Anki Reddy P, Rashad AM. Effectiveness of binary chemical reaction on magneto-fluid flow with Cattaneo–Christov heat flux model. Proc IMechE Part C: J. Mech Eng Sci. 2020. https://doi.org/10.1177/0954406220950347.

    Article  Google Scholar 

  49. Akilu S, Narahari M. Effects of heat generation or absorption on free convection flow of a nanofluid past an isothermal inclined plate. Adv Mater Res. 2014;970:267–71.

    Google Scholar 

  50. Ganga B, Mohamed Yusuff Ansari S, Vishnu Ganesh N, Abdul Hakeem AK. MHD radiative boundary layer flow of nanofluid past a vertical plate with internal heat generation/absorption, viscous and ohmic dissipation effects. J Nigerian Math Soc. 2015;34:181–94.

    Google Scholar 

  51. Gangadhar K, Kannan T, Sakthivel G, DasaradhaRamaiah K. Unsteady free convective boundary layer flow of a nanofluid past a stretching surface using a spectral relaxation method. Int J Ambient Energy. 2020;41:609–16.

    CAS  Google Scholar 

  52. Abel MS, Tawade JV, Nandeppanavar MM. MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica. 2012;47:385–93.

    Google Scholar 

  53. Megahed AM. Variable fluid properties and variable heat flux effects on the flow and heat transfer in a nonNewtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin Phys B. 2013;9:094701.

    Google Scholar 

  54. Abbasi FM, Mustafa M, Shehzad SA, Alhuthali MS, Hayat T. Analytical study of Cattaneo Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin Phys B. 2015;25:014701.

    Google Scholar 

  55. Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Res Phys. 2016;6:627–33.

    Google Scholar 

  56. Abbasbandy S, Mustafa M, Hayat T, Alsaedi A. Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: an analytic solution. J Braz Soc Mech Sci Eng. 2017;39:3389–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkata Ramana, K., Gangadhar, K., Kannan, T. et al. Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow. J Therm Anal Calorim 147, 2749–2759 (2022). https://doi.org/10.1007/s10973-021-10568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10568-x

Keywords

Navigation