Skip to main content
Log in

Evaluation of thermal and radiation stability of EPDM in the presence of some algal powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, ecological-friendly materials based on ethylene–propylene–diene terpolymer (EPDM) with improved thermal and radiation stabilities by Chlorella vulgaris (CV) and Spirulina platensis (SP) powders were investigated by complementary procedures: FTIR spectroscopy and isothermal and nonisothermal chemiluminescence (CL). The stabilization potential of microalgae was evaluated at several degrees of γ-radiolysis by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, while the polymer resistances were studied on a large range of algal concentrations (1, 3, 5 and 10 mass%). The carbonyl and hydroxyl indices of all degraded EPDM formulations were found to be two times smaller in the presence of algal powders, if compared to the pristine material. Some dissimilarities between the oxidation development in pristine and modified EPDM appeared, especially in unirradiated samples. The activation energies required for the oxidation of EPDM and the lifetime of these samples at various temperatures between room temperature and 100 °C were calculated. The antioxidant compounds existing in the studied microalgae proved a significant influence on the stability of EPDM, mainly in the presence of SP, which was confirmed by the activation energies calculated from our CL results. The investigation of cycling thermal degradation revealed the obvious contribution of additives towards delaying EPDM ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeon DH, Park GY, Kwak IS, Lee KH, Park HJ. Antioxidants and their migration into food simulants on irradiated LLDPE film. LWT–Food Sci Technol, 2007; 40: 151–56.

  2. Brodowska M, Guzek D, Jóźwik A, Głąbska D, Godziszewska J, Wojtasik-Kalinowska I, Zarodkiewicz M, Ganter M, Wierzbicka A. The effect of high-CO2 atmosphere in packaging of pork from pigs supplemented with rapeseed oil and antioxidants on oxidation processes. LWT–Food Sci Technol, 2019; 99: 576–82.

  3. Wang K, Zheng ZJ, Liu CH, Wang Y, Li JW, Li IF. Identification and qualification of synergistic antioxidants and their application in sunflower oil. LWT–Food Sci Technol. 2020;118: 108726.

  4. Zaharescu T, Pleşa I, Jipa S. Improvement in the degradation resistance of LDPE for radiochemical processing. Radiat Phys Chem. 2014;94:151–5.

    Article  CAS  Google Scholar 

  5. Kirschweng B, Tátraaljai D, Földer E, Pukánszky B. Natural antioxidants as stabilizers for polymers. Polym Degrad Stab. 2017;14:525.

    Google Scholar 

  6. Masek A, Latos M. The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag Shelf life. 2018;16:51–8.

    Article  Google Scholar 

  7. Pelter M, Wagner JR, Jiménez A. Thermal characterization of UHMWPE stabilized with natural antioxidants. J Therm Anal Calorim. 2007;87:493–7.

    Article  Google Scholar 

  8. Zaharescu T, Ilieş D-L, Roşu T. Thermal and spectroscopic analysis of stabilization effect of copper complexes in EPDM. J Therm Anal Calorim. 2016;123:231–6.

    Article  CAS  Google Scholar 

  9. Zaharescu T, Dumitru A, Marinescu V, Velciu G, Panaitescu D, Sbarcea G. Radiochemical stability and lifetime of HDPE-based flexible composite filled with Ce-doped PbZrTiO3. J Therm Anal Calorim. 2019;138:2419–28.

    Article  CAS  Google Scholar 

  10. Bajić M, Ročnik T, Oberlintner A, Scognamiglio F, Novak U, Likazar B. Natural plant extract as active components in chitosan-base film. A comparative study. Food Packag Shelf Life 2019; 21: 100365.

  11. Chu WL. Potential applications of antioxidant compounds derived from algae. Curr Top Nutraceut Res. 2011;9:83–988.

    CAS  Google Scholar 

  12. Bernstein R, Thornberg SM, Assink RA, Mowery DM, Alam MK, Irwin AN, Hochrein JM, Derzon DK, Klamo SB, Clough RL. Insights into oxidation mechanisms in gamma-irradiated polypropylene, utilizing selective isotopic labeling with analysis by GC/MS, NMR and FTIR. Nucl Instrum Meth Phys Res B. 2007;265:8–17.

    Article  CAS  Google Scholar 

  13. Celina MC. Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym Degrad Stab. 2013;98:2419–29.

    Article  CAS  Google Scholar 

  14. Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F. Nanostructures scaffolds for bone tissue engineering. J Biomed Mater Res Part A. 2013;101:2424–35.

    Article  Google Scholar 

  15. de Morais MG, da Silva Vaz B, de Morais EG, Costa JAV. Biological effects of spirulina (arthrospira) biopolymers and biomass in the development of nanostructured scaffolds. BioMed Res Int. 2014: 762705.https://doi.org/10.1155/2014/762705.

  16. Casadey R, Challier C, Senz A, Criado S. Antioxidant ability of tyrosol and derivative-compounds in the presence of O2(1Δg)-specie. Studies of synergistic effect with commercial antioxidants. Food Chem. 2019; 285: 275–81.

  17. Ángeles R, Rodero R, Carvajal A, Muñez R, Lebrero, R. Potential of microalgae for wastewater treatment and its valorization into added value products. In: Gupta KS, Box F, eds. Application of microalgae in the wastewater treatment. Vol. 2: Biorefinery approaches of wastewater treatment. Cham: Springer, 2019, pp 281–315.

  18. Mateescu C, Zaharescu T. Comprehensive overview of biomethane production potential of algal biomass cultivated in wastewater. In: Gupta KS, Box F, editors. Application of microalgae in the wastewater treatment. Vol. 2: Biorefinery approaches of wastewater treatment. Cham: Springer, 2019, pp 427–444.

  19. Taghavi Takyar, MB, Khajavi ShH, Safari R. Evaluation of antioxidant properties of Chlorella vulgaris and Spirna platensis and their application in order to extend the self fife of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT–Food Sci Technol. 2019;100: 244–9.

  20. Yu MG, Chen MJ, Gui JG, Huang SD, Liu YM, Shentu HF, He J, Fang ZY. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int J Biol Macromol. 2019;137:139–50.

    Article  CAS  Google Scholar 

  21. Olasehinde TA, Olaniran AO, Okah AI. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules. 2017;22:480.

    Article  Google Scholar 

  22. Sabeena Sarvin KH, Jacobsen Ch. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013;138:1670–81.

    Article  Google Scholar 

  23. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007;102:771–6.

    Article  CAS  Google Scholar 

  24. Gioris K, Muylaert K, Fraeye I, Foubert I, de Brabanter J, de Cooman L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol. 2012;24:1477–86.

    Article  Google Scholar 

  25. Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, Tabarsa M, You SG, Prabhu NM. Insulation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial and Zebrafish growth and reproductive performance. Int J Biol Macrom. 2019;141:809–21.

    Article  CAS  Google Scholar 

  26. Soni RA, Sudhakar K, Rana RS. Spirulina–from growth to nutritional product: a review. Trends Food Sci Technol. 2017;69:157–71.

    Article  CAS  Google Scholar 

  27. Wang L, Pan B, Sheng JC, Xu J, Hu QH. Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem. 2007;105:36–41.

    Article  CAS  Google Scholar 

  28. de Marco ER, Steffolani ME, Martínez CS, León AE Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT–Food Sci Technol. 2014; 58: 102–8.

  29. Petiwala S, Johnson JJ. Diterpenes from rosemary (Rosmarinus Officinalis): defining their potential for anti-cancer activity. Cancer Lett. 2015;367:93–102.

    Article  CAS  Google Scholar 

  30. Jipa S, Zaharescu T, Gorghiu LM, Dumitrescu C, Setnescu R, Esteves MA, Gigante B. Kinetic characterisation of radiation resistance of stabilised LDPE. J Appl Polym Sci. 2005;95:1571–7.

    Article  CAS  Google Scholar 

  31. Hu TC, Yang SJ, Mao YL. The effect of γ-irradiation on spirulinaplatensis. ActaAgric Nucl Sinica. 1990;4:120–4.

    Google Scholar 

  32. Jipa S, Zaharescu T, Kappel W, Dumitrescu C, Mariş M, Mantsch A, Lungulescu M. Scavenger capacity of natural phenols in some selected labiatae herbs. Optoelectron Adv Mater Rapid Commun. 2008;2:669–73.

    CAS  Google Scholar 

  33. Forero-Doria O, Flores Garcia M, Vergara CE, Guzman L. Thermal Analysis and antioxidant activity of oil extracted from pulp of ripe avocados. J Therm Anal Calorim. 2017;130:959–66.

    Article  CAS  Google Scholar 

  34. Souza VC, Santos EBC, Mendoça AV, Silva LB. Thermal behavior and decomposition kinetic studies of biomedical UHMWPE/vitamin C compounds. J Therm Anal Calorim. 2018;134:2097–105.

    Article  CAS  Google Scholar 

  35. Schirald A, Fessas D. Calorimetry and thermal analysis in food science. J Therm Anal Calorim. 2019;138:2721–32.

    Article  Google Scholar 

  36. Zaharescu T, Giurginca M, Jipa S. Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants. Polym Degrad Stab. 1999;63:245–51.

    Article  CAS  Google Scholar 

  37. Baatti A, Erchiqui F, Godard F, Bussiéres D, Bèbin P. DMA analysis, thermal study and morphology of polymethylsisesquioxane nanoparticles reinforced HDPE nanocomposites. J Therm Anal Calorim. 2020;139:789–97.

    Article  CAS  Google Scholar 

  38. Behera B, Balasubramanian P. Natural plant extract as an ecological and friendly alternative for harvesting microalgae. Bioresource Technol. 2019;283:45–52.

    Article  CAS  Google Scholar 

  39. Mira-Sánchez MD, Castillo-Sánchez J, Morillas-Ruiz J.M. Comparative study of rosemary extract and several synthetic and natural food antioxidants. Relevance of carnosic acid/carnosol ratio. Food Chem, 2019; 309: 125688.

  40. Rychlý J, Rychlá L, Novák I, Vanko V, Preťo J, Janigová I, Chodák I. Thermooxidative stability of hot melt adhesive based on metallocene polyolefin grafted with polar acrylic acid moieties. Polym Test. 2020;85:106422.

    Article  Google Scholar 

  41. Cerruti P, Malinconico M, Rychlý J, Matisová-Rychlá L, Carfagna C. Effect of natural antioxidants on the stability of polypropylene films. Polym Degrad Stab. 2009;94:2095–100.

    Article  CAS  Google Scholar 

  42. Teixeira TS, Vale RC, Almeida RR, Ferreira TPS, Guimaraes LGL. Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Rev Virtual Quim. 2017;9:1546–59.

    Article  CAS  Google Scholar 

  43. Stoian SA, Gabor AR, Albu A-M, Nicolae CA, Raditoiu V, Panaitescu DM. Recycled polypropylene with improved thermal stability and melt processability. J Therm Anal Calorim. 2019;138:2469–80.

    Article  CAS  Google Scholar 

  44. Sowińska A, Maciejewska M. Thermal analysis applied to study the influence of ionic liquids on the vulcanization, thermal stability and damping properties of ethylene-propylene-diene rubber. J Therm Anal Calorim. 2019;138:2669–811.

    Article  Google Scholar 

  45. Low KL, Idris A, Mohd YN. Novel protocol optimized for microalgae lutein as food additives. Food Chem. 2020;307:125631.

    Article  CAS  Google Scholar 

  46. Philippart JL, Sinturel C, Armand R, Gardette JL. Influence of the exposure parameters on the mechanism of photooxidation of polypropylene. Polym Degrad Stab. 1999;64:213–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Education and Research Ministry for funding this study in the frame of project PN-III-P1-1.2-PCCDI-2017-0541, “The energetic efficiency growth of biogas equipments by the design of biogas-microalgae-biofuels based on the refinery concept”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Mateescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 1563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Mateescu, C., Dima, A. et al. Evaluation of thermal and radiation stability of EPDM in the presence of some algal powders. J Therm Anal Calorim 147, 327–336 (2022). https://doi.org/10.1007/s10973-020-10319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10319-4

Keywords

Navigation