Skip to main content
Log in

A novel ceramifiable epoxy composite with enhanced fire resistance and flame retardance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel epoxy composite with flame retardance and fire resistance was prepared by adding silicate glass frit (SGF) and ammonium polyphosphate (APP) into the epoxy resin. In the combustion test, epoxy composites displayed obvious flame retardance feature, showing much lower heat release rate, total heat release and total smoke production than epoxy resin. The composite residue formed at 900 °C had a flexural strength of 19.05 MPa. In addition, possible mechanisms for the phase separation and crystallization reactions at high temperatures were also investigated in detail through thermogravimetric analyzer, X-ray diffraction, X-ray photoelectron spectrometer, and scanning electron microscopy. It was suggested that phosphorus element tends to migrate to the surface of the composite residue during firing process, and sodium element from SGF is selectively combined with the phosphorus element to obtain crystalline phases. With this unique phase separation and crystallization reactions, the fire resistance of the epoxy composite was significantly improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu MJ, Zhao W, Li B. Synthesis of a novel curing agent containing organophosphorus and its application in flame-retarded epoxy resins. J Appl Polym Sci. 2014;131:1–12. https://doi.org/10.1002/app.41159.

    Article  CAS  Google Scholar 

  2. Gu JW, Liang C, Zhao X, et al. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol. 2017;139:83–9. https://doi.org/10.1016/j.compscitech.2016.12.015.

    Article  CAS  Google Scholar 

  3. Wang N, Teng HW, Li L, Zhang J, Kang P. Synthesis of phosphated K-carrageenan and its application for flame-retardant waterborne epoxy. Polymers. 2018;10:1268. https://doi.org/10.3390/polym10111268.

    Article  CAS  PubMed Central  Google Scholar 

  4. Chen ZK, Yang G, Yang JP, Fu SY, Ye L, Huang YG. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer. 2009;50:1316–23. https://doi.org/10.1016/j.polymer.2008.12.048.

    Article  CAS  Google Scholar 

  5. Zhang JH, Kong QH, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376. https://doi.org/10.1039/c7ta10961j.

    Article  CAS  Google Scholar 

  6. Guan FL, Gui CK, Zhang HB, Jiang ZG, Jiang Y, Yu ZZ. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide. Compos Part B. 2016;98:134–40. https://doi.org/10.1016/j.compositesb.2016.04.062.

    Article  CAS  Google Scholar 

  7. Müller P, Morys M, Sut A, Jäger C, Illerhaus B, Schartel B. Melamine poly(zinc phosphate) as flame retardant in epoxy resin: decomposition pathways, molecular mechanisms and morphology of fire residues. Polym Degrad Stabil. 2016;130:307–19. https://doi.org/10.1016/j.polymdegradstab.2016.06.023.

    Article  CAS  Google Scholar 

  8. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712. https://doi.org/10.1016/s0079-6700(02)00018-7.

    Article  CAS  Google Scholar 

  9. Wang ZH, Wei P, Qian Y, Liu JP. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos Part B. 2014;60:341–9. https://doi.org/10.1016/j.compositesb.2013.12.033.

    Article  CAS  Google Scholar 

  10. Guo WW, Yu B, Yuan Y, Song L, Hu Y. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos Part B. 2017;123:154–64. https://doi.org/10.1016/j.compositesb.2017.05.024.

    Article  CAS  Google Scholar 

  11. Gu JW, Dang J, Wu YL, Xie C, Han Y. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polym Plast Technol. 2012;51:1198–203. https://doi.org/10.1080/03602559.2012.694951.

    Article  CAS  Google Scholar 

  12. Mansouri J, Burford RP, Cheng YB, Hanu L. Formation of strong ceramified ash from silicone-based compositions. J Mater Sci. 2005;40:5741–9. https://doi.org/10.1007/s10853-005-1427-8.

    Article  CAS  Google Scholar 

  13. Hanu LG, Simon GP, Mansouri J, Burford RP, Cheng YB. Development of polymer–ceramic composites for improved fire resistance. J Mater Process Tech. 2004;153:401–7. https://doi.org/10.1016/j.jmatprotec.2004.04.104.

    Article  CAS  Google Scholar 

  14. Li YM, Deng C, Wang YZ. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Compos Sci Technol. 2016;132:116–22. https://doi.org/10.1016/j.compscitech.2016.07.007.

    Article  CAS  Google Scholar 

  15. Anyszka R, Bielinski DM, Pedzich Z, Szumera M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J Therm Anal Calorim. 2015;119:111–21. https://doi.org/10.1016/j.ceramint.2012.07.109.

    Article  CAS  Google Scholar 

  16. Wang JH, Ji CT, Yan YT, Zhao D, Shi LY. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym Degrad Stabil. 2015;121:149–56. https://doi.org/10.1016/j.polymdegradstab.2015.09.003.

    Article  CAS  Google Scholar 

  17. Hu S, Chen F, Li JG, Shen Q, Huang ZX, Zhang L. The ceramifying process and mechanical properties of silicone rubber/ammonium polyphosphate/aluminium hydroxide/mica composites. Polym Degrad Stabil. 2016;126:196–203. https://doi.org/10.1016/j.polymdegradstab.2016.02.010.

    Article  CAS  Google Scholar 

  18. Guo JH, Gao W, Wang Y, Liang D, Li HJ, Zhang X. Effect of glass frit with low softening temperature on the properties, microstructure and formation mechanism of polysiloxane elastomer-based ceramizable composites. Polym Degrad Stabil. 2017;136:71–9. https://doi.org/10.1016/j.polymdegradstab.2016.12.012.

    Article  CAS  Google Scholar 

  19. Shi MX, Chen X, Fan SS, Shen S, Liu TX, Huang ZX. Fluxing agents on ceramification of composites of MgO-Al2O3-SiO2/Boron phenolic resin. J of Wuhan University of Technology Mater Sci. 2018;33:381–8. https://doi.org/10.1007/s11595-018-1833-8.

    Article  CAS  Google Scholar 

  20. Mansouri J, Wood CA, Roberts K, Cheng YB, Burford RP. Investigation of the ceramifying process of modified silicone–silicate compositions. J Mater Sci. 2007;42:6046–55. https://doi.org/10.1007/s10853-006-1163-8.

    Article  CAS  Google Scholar 

  21. Di HW, Deng C, Li RM, Dong LP, Wang YZ. A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. Rsc Adv. 2015;5:51248–57. https://doi.org/10.1039/C5RA05781G.

    Article  CAS  Google Scholar 

  22. Imiela M, Anyszka R, Bieliński DM, Pędzich Z, Zarzecka NM, Szumera M. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber. J Therm Anal Calorim. 2016;124:197–203. https://doi.org/10.1007/s10973-015-5115-x.

    Article  CAS  Google Scholar 

  23. Lou FP, Wu K, Wang Q, Qian ZY, Li SJ, Guo WH. Improved flame-retardant and ceramifiable properties of EVA composites by combination of ammonium polyphosphate and aluminum hydroxide. Polymers. 2019;11:125. https://doi.org/10.3390/polym11010125.

    Article  CAS  PubMed Central  Google Scholar 

  24. Zhao D, Shen YC, Wang T. Ceramifiable EVA/APP/SGF composites for improved ceramifiable properties. Polym Degrad Stabil. 2018;150:140–7. https://doi.org/10.1016/j.polymdegradstab.2018.02.006.

    Article  CAS  Google Scholar 

  25. Gong XH, Shen YC, Wang TW. Improved ceramifiable properties of EVA composites with whitened and capsulized red phosphorus (WCRP). RSC Adv. 2016;6:96984–9. https://doi.org/10.1039/C6RA22126B

    Article  CAS  Google Scholar 

  26. Gong XH, Wu TY, Ma J, Zhao D, Shen YC, Wang TW. Improved self-supporting property of ceramifying silicone rubber composites by forming crystalline phase at high temperatures. J Alloy Compd. 2017;706:322–9. https://doi.org/10.1016/j.jallcom.2017.02.252.

    Article  CAS  Google Scholar 

  27. Gong XH, Wang TW. Optimisation of the ceramic-like body for ceramifiable EVA-based composites. Sci Eng Compos Mater. 2017;24:599–607. https://doi.org/10.1515/secm-2015-0093.

    Article  CAS  Google Scholar 

  28. Lou FP, Yan W, Guo WH, Wei T, Li QY. Preparation and properties of ceramifiable flame-retarded silicone rubber composites. J Therm Anal Calorim. 2017;130:813–21. https://doi.org/10.1007/s10973-017-6448-4.

    Article  CAS  Google Scholar 

  29. Dong LP, Deng C, Li RM, Cao ZJ, Lin L, Che L, Wang YZ. Poly (piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. Rsc Adv. 2016;6:30436–44. https://doi.org/10.1039/C6RA00164E

    Article  CAS  Google Scholar 

  30. Liao SF, Deng C, Huang SC, Cao JY, Wang YZ. An efficient halogen-free flame retardant for polyethylene: piperazine modified ammonium polyphosphates with different structures. Chinese J Polym Sci. 2016;34:1339–53.  https://doi.org/10.1007/s10118-016-1855-8

    CAS  Google Scholar 

  31. Kong QH, Sun YL, Zhang CJ, Guan HM, Zhang JH, Wang DY, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748. https://doi.org/10.1016/j.compscitech.2019.107748.

    Article  CAS  Google Scholar 

  32. Yu ZL, et al. Fire-retardant and thermally insulatingphenolic-silica aerogels. Angewandte Chemie Int Edition. 2018;57:4538–42. https://doi.org/10.1002/anie.201711717.

    Article  CAS  Google Scholar 

  33. Yang XT, Tang L, Guo YQ, Liang CB, Zhang Q, Kou KC, Gu JW. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-Poss functionalized nBN fillers. Compos Part A. 2017;101:237–42. https://doi.org/10.1016/j.compositesa.2017.06.005.

    Article  CAS  Google Scholar 

  34. Zhang YW, Shen YC, Shi KX, Wang TW, Harkin JE. Constructing a filler network for thermal conductivity enhancement in epoxy composites via reaction-induced phase separation. Compos Part A. 2018;110:62–9. https://doi.org/10.1016/j.compositesa.2018.04.009

    Article  CAS  Google Scholar 

  35. Xiong YL, Shen Q, Chen F, Luo GQ, Yu K, Zhang LM. High strength retention and dimensional stability of silicone/alumina composite panel under fire. Fire Mater. 2012;36:254–63. https://doi.org/10.1002/fam.1107.

    Article  CAS  Google Scholar 

  36. Anyszka R, Bielinski DM, Pedzich Z, Rybinski P, Imiela M, Sicinski M, Zarzecka-Napierała M, Gozdek T, Rutkowski P. Thermal stability and flammability of styrene-butadiene rubber-based (SBR) ceramifiable composites. Materials. 2016;9:604–16. https://doi.org/10.3390/polym9110615.

    Article  CAS  PubMed Central  Google Scholar 

  37. Xu J, Wang YJ, Tan Y, Qi M, Chen L, Wang YZ. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chem Eng J. 2018;337:30–9. https://doi.org/10.1016/j.cej.2017.12.086.

    Article  CAS  Google Scholar 

  38. Jiang WZ, Hao JW, Han ZD. Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polym Degrad Stabil. 2012;97:632–7. https://doi.org/10.1016/j.polymdegradstab.2012.01.001.

    Article  CAS  Google Scholar 

  39. Cinausero N, Azema N, Lopez-Cuesta JM, Cochez M, Ferriol M. Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of polymethyl methacrylate and polystyrene. Polym Degrad Stabil. 2011;96:1445–54. https://doi.org/10.1016/j.polymdegradstab.2011.05.008.

    Article  CAS  Google Scholar 

  40. Kanai H, Sullivan V, Auerbach A. Impact modification of engineering thermoplastics. J Appl Polym Sci. 1994;53:527–41. https://doi.org/10.1002/app.1994.070530507.

    Article  CAS  Google Scholar 

  41. Hsiue GH, Wei HF, Shiao SJ, Kuo WJ, Sha YA. Chemical modification of dicyclopentadiene-based epoxy resins to improve compatibility and thermal properties. Polym Degrad Stabil. 2001;73:309–18. https://doi.org/10.1016/S0141-3910(01)00092-1.

    Article  CAS  Google Scholar 

  42. Ye CS, Chen LX, Bai XG, Bao XT. Research progress of flame retardant silicon-containing epoxy resin system. Shanxi Chemical Industry. 2009;29:33–7.

    Google Scholar 

  43. Wu CL, Wang BB, Tao R, Fang LW, Li HX. Study of mineral structure transformation of coal Ash with high ash melting temperature by XPS. Spectrosc Spectr Anal. 2018;38:2296–301. https://doi.org/10.3964/j.issn.1000-0593(2018)07-2296-06.

    Article  CAS  Google Scholar 

  44. Dong S, Pang X. Xps analysis of phosphorylation layer on iron surface. Mater Protec. 1984;10:16577.

    Google Scholar 

  45. Ma HB, Li J, Ren TH. Tribological behavior s and film analysis of two ashless phosphorus/sulfur-containing additives in rapeseed oil. Acta Phys Chim Sin. 2008;24:799–804.

    Article  CAS  Google Scholar 

  46. Mansouri J, Burford RP, Cheng YB. Pyrolysis behaviour of silicone-based cer-amifying composites. Mater Sci Eng A Struct Mater Proper Microstruct Process. 2006;425(1–2):7–14. https://doi.org/10.1016/j.msea.2006.03.047.

    Article  CAS  Google Scholar 

  47. Honma T, Sato A, Ito N, Togashi T, Shinozaki K, Komatsu T. Crystallization behavior of sodium iron phosphate glass for sodium ion batteries. J Non-Cryst Solids. 2014;404:26–31. https://doi.org/10.1016/j.jnoncrysol.2014.07.028.

    Article  CAS  Google Scholar 

  48. Dong WX, Bao QF, Gu X, Shen H, Yang J. Dry-pressing preparation of mullite columnar structure using waste gangue during firing and its properties. J Ceram Soc Jpn. 2017;125:75–8. https://doi.org/10.2109/jcersj2.16258.

    Article  CAS  Google Scholar 

  49. Ou YX. Flame retardant. 4th ed. Beijing: National Defense Industry Press; 2009.

    Google Scholar 

  50. Levchik SV, Camino G, Levchik GF, Costa L. Mechanism of action of phosphorus-based flame retardants in nylon 6. I. ammonium polyphosphate. Fire Mater. 1995;19:1–10.

    Article  CAS  Google Scholar 

  51. Zhang QT. Inorganic materials science foundation. 1st ed. Shanghai: East China University Sci Tech Press; 2007.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 51703096), China Postdoctoral Science Foundation (2018M64229), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Industry Foresight and Generic Key Technology of Suqian (H201816).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yucai Shen or Tingwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Liu, W., Shen, Y. et al. A novel ceramifiable epoxy composite with enhanced fire resistance and flame retardance. J Therm Anal Calorim 147, 181–193 (2022). https://doi.org/10.1007/s10973-020-10200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10200-4

Keywords

Navigation