Skip to main content
Log in

Carbon nanotubes (CNTs)-based flow between two spinning discs with porous medium, Cattaneo–Christov (non-Fourier) model and convective thermal condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Inspired by various applications (ocean’s renewable power technologies, spinning disc reactor, engineering systems, etc.) of fluid flow between rotating disc, we have investigated magnetohydrodynamic flow of multi-wall and single-wall carbon nanotubes (MWCNTs and SWCNTs)-based fluid between two rotating, coaxial and parallel stretching discs with porous medium and convective thermal condition. The non-vanishing relaxation time in the dissipative process is assumed. The energy equation is developed by using Cattaneo–Christov heat flux model. ND-Solve command of MATHEMATICA software is used for the numerical solution of the governing equations. The physical behaviour of axial, radial and tangential velocity along with temperature of nanofluid is discussed in detail. When porous permeability parameter is small, then tangential velocity of MWCNTs-based fluid is higher than that of the SWCNTs-based fluid. Moreover, when porous permeability parameter is small, the Reynolds number retards the tangential velocity but when porous permeability parameter is large, Reynolds number boots the tangential velocity up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

\(a_1,a_2\) :

Stretching rates of lower and upper disc, respectively

\({B_1}, {B_2}\) :

Ratio of stretching rate to angular velocity

\({C_1},{C_2}\) :

Skin friction coefficients at lower and upper disc, respectively

\(h_1, h_2\) :

Convective heat transfer coefficients at lower and upper disc, respectively

\({k_0}\) :

Permeability of porous medium

\({k_{\mathrm{nf}}}\) :

Thermal conductivity of nanofluid

\({\mathrm{Nu}_1}, {\mathrm{Nu}_2}\) :

Nusselt numbers at lower and upper discs

Pr:

Prandtl number

Re:

Reynolds number

T :

Fluid temperature

\(T_0, T_1\) :

Temperature at lower and upper discs, respectively

\({\gamma _1}, {\gamma _2}\) :

Thermal Biot numbers at lower and upper disc

\({\upsilon _{\mathrm{nf}}}\) :

Kinematic coefficient of viscosity

\({(\rho {c_\mathrm{p}})_{\mathrm{nf}}}\) :

Heat capacity of nanofluid

\({\omega _1, \omega _2}\) :

Angular velocity of lower and upper disc, respectively

\(\lambda\) :

Thermal relaxation parameter

\({\beta }\) :

Porous permeability parameter

\(\phi\) :

Nanoparticle solid volume fraction

\(\Omega\) :

The rotation parameter

References

  1. Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. NETSU BUSSEI. 1993;7(4):227–33.

    Article  CAS  Google Scholar 

  2. Kumar B, Seth GS. MHD stagnation point transient flow of a nanofluid past a stretching sheet: SRM approach. Lat Am Appl Res. 2019;49(3):205–11.

    Google Scholar 

  3. Kumar B, Seth GS, Nandkeolyar R. Regression model and analysis of MHD mixed convective stagnation point nanofluid flow: SLM and SRM approach. Bulg Chem Commun. 2019;51(4):557–68.

    Google Scholar 

  4. Ghalambaz M, Sheremet MA, Mehryan SA, Kashkooli FM, Pop I. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J Therm Anal Calorim. 2019;135(2):1381–98.

    Article  CAS  Google Scholar 

  5. Mehryan SA, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2019;135(2):1047–67.

    Article  CAS  Google Scholar 

  6. Mehryan SA, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with \(Cu-Al_2 O_ 3\)/water hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):965–82.

    Article  CAS  Google Scholar 

  7. Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf Part A Appl. 2018;73(4):254–76.

    Article  CAS  Google Scholar 

  8. Menni Y, Chamkha AJ, Azzi A. Nanofluid transport in porous media: a review. Special Top Rev Porous Med Int J. 2019;10(1):49–64.

    Article  Google Scholar 

  9. Menni Y, Chamkha AJ, Azzi A. Nanofluid flow in complex geometries’a review. J Nanofluids. 2019;8(5):893–916.

    Article  Google Scholar 

  10. Menni Y, Chamkha AJ, Lorenzini G, Kaid N, Ameur H, Bensafi M. Advances of nanofluids in solar collectors’a review of numerical studies. Math Model Eng Probl. 2019;6(3):415–27.

    Article  Google Scholar 

  11. Hayat T, Hussain Z, Alsaedi A, Asghar S. Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv Powder Technol. 2016;27(4):1677–88.

    Article  CAS  Google Scholar 

  12. Mohd-Ghazali N, Estellé P, Halelfadl S, Maré T, Siong TC, Abidin U. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. J Therm Anal Calorim. 2019;138:937–45.

    Article  CAS  Google Scholar 

  13. Pamies R, Avilés M, Arias-Pardilla J, Carrión F, Sanes J, Bermúdez M. Rheological study of new dispersions of carbon nanotubes in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. J Mol Liq. 2019;278:368–75.

    Article  CAS  Google Scholar 

  14. Khan SA, Saeed T, Khan MI, Hayat T, Khan MI, Alsaedi A. Entropy optimized CNTs based Darcy–Forchheimer nanomaterial flow between two stretchable rotating disks. Int J Hydrog Energy. 2019;. https://doi.org/10.1016/j.ijhydene.2019.10.053.

    Article  Google Scholar 

  15. Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Heat and nanofluid transfer in baffled channels of different outlet models Heat and nanofluid transfer in baffled channels of different outlet models. Math Model Eng Probl. 2019;6(1):21–8.

    Article  Google Scholar 

  16. Menni Y, Chamkha AJ, Zidani C, Benyoucef B. Numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates numerical analysis of heat and nanofluid mass transfer in a channel with detached and attached baffle plates. Math Model Eng Probl. 2019;6(1):52–60.

    Article  Google Scholar 

  17. Menni Y, Chamkha AJ, Massarotti N, Ameur H, Kaid N, Bensafi M. Hydrodynamic and thermal analysis of water, ethylene glycol and water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles. Int J Numer Methods Heat Fluid Flow. 2020;. https://doi.org/10.1108/HFF-10-2019-0739.

    Article  Google Scholar 

  18. Menni Y, Azzi A, Zidani C, Benyoucef B. Numerical analysis of turbulent forced-convection flow in a channel with staggered l-shaped baffles. J New Technol Mater. 2016;6(2):44–55.

    Article  CAS  Google Scholar 

  19. Menni Y, Azzi A, Zidani C. Use of waisted triangular-shaped baffles to enhance heat transfer in a constant temperature-surfaced rectangular channel. J Eng Sci Technol. 2017;12(12):3251–73.

    Google Scholar 

  20. Menni Y, Azzi A, Didi F, Harmand S. Computational fluid dynamical analysis of new obstacle design and its impact on the heat transfer enhancement in a specific type of air flow geometry. Comput Therm Sci Int J. 2018;10(5):421–47.

    Article  Google Scholar 

  21. Zidani C. CFD simulation of thermo-aeraulic fields in a channel with multiple baffle plates. J Therm Eng. 2018;4(6):2481–95.

    Article  Google Scholar 

  22. Menni Y, Azzi A. Numerical analysis of thermal and aerodynamic fields in a channel with cascaded baffles. Period Polytech Mech Eng. 2018;62(1):16–25.

    Article  Google Scholar 

  23. Menni Y, Azzi A. Computational fluid dynamical analysis of turbulent heat transfer in a channel fitted with staggered v-shaped baffles. World J Model Simul. 2018;14(2):108–23.

    Google Scholar 

  24. Menni Y, Azzi A. Effect of fin spacing on turbulent heat transfer in a channel with cascaded rectangular-triangular fins. J New Technol Mater. 2017;7(2):10–21.

    Article  CAS  Google Scholar 

  25. Menni Y, Azzi A. Design and performance evaluation of air solar channels with diverse baffle structures. Comput Therm Sci Int J. 2018;10(3):225–49.

    Article  Google Scholar 

  26. Menni Y, Chamkha A, Zidani C, Benyoucef B. Baffle orientation and geometry effects on turbulent heat transfer of a constant property incompressible fluid flow inside a rectangular channel. Int J Numer Method Heat Fluid Flow. 2019;. https://doi.org/10.1108/HFF-12-2018-0718.

    Article  Google Scholar 

  27. Menni Y, Chamkha AJ, Azzi A, Zidani C, Benyoucef B. Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers. Math Model Eng Probl. 2019;6(1):77–84.

    Article  Google Scholar 

  28. Menni Y, Azzi A, Chamkha AJ. Developing heat transfer in a solar air channel with arc-shaped baffles: effect of baffle attack angle. J New Technol Mater. 2018;8(1):58–67.

    Article  CAS  Google Scholar 

  29. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J Therm Anal Calorim. 2019;135(4):1951–76.

    Article  CAS  Google Scholar 

  30. Menni Y, Azzi A, Chamkha AJ. Aerodynamics and heat transfer over solid-deflectors in transverse, staggered, corrugated-upstream and corrugated-downstream patterns. Period Polytech Mech Eng. 2018;62(3):209–17.

    Article  Google Scholar 

  31. Menni Y, Azzi A, Chamkha A. Modeling and analysis of solar air channels with attachments of different shapes. Int J Numer Method Heat Fluid Flow. 2019;29(5):1815–45.

    Article  Google Scholar 

  32. Fourier J. Theorie Analytique De La Chaleur. Père et Fils: Chez Firmin Didot; 1822.

    Google Scholar 

  33. Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena. 1948;3:83–101.

    Google Scholar 

  34. Christov CA. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36(4):481–6.

    Article  Google Scholar 

  35. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Impact of Cattaneo–Christov heat flux in Jeffrey fluid flow with homogeneous–heterogeneous reactions. PLoS ONE. 2016;11(2):e0148662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mustafa M. Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. Aip Adv. 2015;5(4):047109.

    Article  Google Scholar 

  37. Karman TV. Uber laminare und turbulente reibung. J Appl Math Mech. 1921;1(4):233–52.

    Google Scholar 

  38. Rajagopal K. Flow of viscoelastic fluids between rotating disks. Theor Comput Fluid Dyn. 1992;3(4):185–206.

    Article  Google Scholar 

  39. Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018;30(6):063605.

    Article  CAS  Google Scholar 

  40. Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji D, Ranjbar A. Investigation of MHD eyring-powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Stud Therm Eng. 2019;13:100356.

    Article  Google Scholar 

  41. Imtiaz M, Kiran A, Hayat T, Alsaedi A. Joule heating and MHD effects in flow of second-grade fluid due to a rotating disk with variable thickness. Phys Scr. 2018;94(8):085203.

    Article  CAS  Google Scholar 

  42. Ellahi R, Bhatti MM, Riaz A, Sheikholeslami M. Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium. J Porous Med. 2014;17(2):143–57.

    Article  Google Scholar 

  43. Kumar B, Seth GS, Nandkeolyar R. Regression model and successive linearization approach to analyse stagnation point micropolar nanofluid flow over a stretching sheet in a porous medium with nonlinear thermal radiation. Phys Scr. 2019;94(11):115211.

    Article  CAS  Google Scholar 

  44. Sibanda P, Makinde OD. On steady MHD flow and heat transfer past a rotating disk in a porous medium with Ohmic heating and viscous dissipation. Int J Numer Method Heat Fluid Flow. 2010;20(3):269–85.

    Article  CAS  Google Scholar 

  45. Rauf A, Abbas Z, Shehzad S. Interactions of active and passive control of nanoparticles on radiative magnetohydrodynamics flow of nanofluid over oscillatory rotating disk in porous medium. J Nanofluids. 2019;8(7):1385–96.

    Article  Google Scholar 

  46. Imtiaz M, Hayat T, Alsaedi A, Ahmad B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. Int J Heat Mass Trans. 2016;101:948–57.

    Article  CAS  Google Scholar 

  47. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter. 2005;368(1–4):302–7.

    Article  CAS  Google Scholar 

  48. Knapp R. A method of lines framework in mathematica. J Numer Anal Ind Appl Math. 2008;3:43–59.

    Google Scholar 

  49. Motsuimi TG. Solution of initial value problems using ndsolve of mathematica. Botswana J Technol. 2008;. https://doi.org/10.4314/bjt.v17i1.52194.

    Article  Google Scholar 

  50. Hayat T, Haider F, Muhammad T, Alsaedi A. Three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer porous medium. PLoS ONE. 2017;12(7):e0179576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hajjar A, Mehryan SA, Ghalambaz M. Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. Int J Mech Sci. 2020;166:105243.

    Article  Google Scholar 

  52. Ghalambaz M, Mehryan SA, Hajjar A, Veisimoradi A. Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium. Adv Powder Technol. 2019;. https://doi.org/10.1016/j.apt.2019.12.010.

    Article  Google Scholar 

  53. Ghalambaz M, Grosan T, Pop I. Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J Mol Liq. 2019;293:111432.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Mr. Bhuvaneshvar Kumar is highly thankful to Ms. Prachi Chauhan for inspiring him to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Seth, G.S., Singh, M.K. et al. Carbon nanotubes (CNTs)-based flow between two spinning discs with porous medium, Cattaneo–Christov (non-Fourier) model and convective thermal condition. J Therm Anal Calorim 146, 241–252 (2021). https://doi.org/10.1007/s10973-020-09952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09952-w

Keywords

Navigation