Skip to main content
Log in

Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study involves the experimental investigation of the heat sink aided with nanoparticle-enhanced phase change material and heat pipe for the passive cooling of electronic components, thereby increasing the reliability of the working system. In this study, RT-35HC is used as the base phase change materials along with the incorporation of Graphene oxide nanoparticles (0.003 mass% and 0.005 mass%) for different heating loads i.e., 1 KW m−2, 1.5 KW m−2 and 2.5 KW m−2. Results illustrated that after the charging phase, heat sink aided with nanoparticle-enhanced phase change material and heat pipe has shown the best results for lower heating loads of 1 KW m−2, 1.5 KW m−2, respectively, by showing the temperature reduction of 29.53% and 34.06% (at 1 KW m−2) and also 36.29% and 36.45% (at 1.5 KW m−2) for 0.003 mass% and 0.006 mass%, respectively. For high heat flux of 2.5 KW m−2, phase change material/heat pipe-aided heat sink has shown the best combination i.e., showing a temperature reduction of 42.81%, respectively, whereas, for both the concentrations i.e., 0.003 mass% and 0.006 mass%, the reduction in the peak temperature of heat sink at the end of the charging process is 32.95% and 37.54%. Hence, RT-35HC-based nanoparticle-enhanced phase change material composite-aided heat sinks are best recommended for lower power levels whereas, at higher power levels the thermal conductivity reduces due to the particles agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b :

Breadth

I :

Current

K :

Thermal conductivity

l :

Length

\(\hat{q}\) :

Heat flux

T m :

Melting temperature

T s :

Solidification temperature

V:

Voltage

mass%:

Mass percentage

ρ :

Density

δ :

Uncertainty value

References

  1. S. (Online service), World energy outlook. OECD/IEA, 2006.

  2. Rastogi M, Chauhan A, Vaish R, Kishan A. Selection and performance assessment of phase change materials for heating, ventilation and air-conditioning applications. Energy Convers Manag. 2015;89:260–9.

    Article  Google Scholar 

  3. Zukowski M. Mathematical modeling and numerical simulation of a short term thermal energy storage system using phase change material for heating applications. Energy Convers Manag. 2007;48(1):155–65.

    Article  CAS  Google Scholar 

  4. Merlin K, Soto J, Delaunay D, Traonvouez L. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy. 2016;183:491–503.

    Article  CAS  Google Scholar 

  5. Yang Y-T, Wang Y-H. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material. Int J Therm Sci. 2012;51:155–62.

    Article  CAS  Google Scholar 

  6. Baby R, Balaji C. Thermal performance of a PCM heat sink under different heat loads: an experimental study. Int J Therm Sci. 2014;79:240–9.

    Article  CAS  Google Scholar 

  7. Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin-fin heat sinks: a comparison. Int J Heat Mass Transf. 2018;117:1199–204.

    Article  CAS  Google Scholar 

  8. Ashraf MJ, Ali HM, Usman H, Arshad A. Experimental passive electronics cooling: parametric investigation of pin-fin geometries and efficient phase change materials. Int J Heat Mass Transf. 2017;115:251–63.

    Article  CAS  Google Scholar 

  9. Selimefendigil F, Öztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2019;200:61–75.

    Article  Google Scholar 

  10. Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf. 2009;36(5):467–70.

    Article  CAS  Google Scholar 

  11. Chamkha AJ, Selimefendigil F. MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material. Int J Numer Methods Heat Fluid Flow. 2018

  12. Selimefendigil F, Oztop HF, Chamkha AJ. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Therm Anal Calorim. 2019;135(2):1577–94.

    Article  CAS  Google Scholar 

  13. Abdelrazek AH, Kazi SN, Alawi OA, Yusoff N, Oon CS, Ali HM. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2020;139(3):1637–53.

    Article  CAS  Google Scholar 

  14. Fan L-W, et al. Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng. 2015;75:532–40.

    Article  CAS  Google Scholar 

  15. Chintakrinda K, Weinstein RD, Fleischer AS. A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci. 2011;50(9):1639–47.

    Article  CAS  Google Scholar 

  16. Weinstein RD, Kopec TC, Fleischer AS, D’Addio E, Bessel CA. The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics. J Heat Transfer. 2008;130(4):42405.

    Article  Google Scholar 

  17. Zeng J-L, et al. Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2014;127:122–8.

    Article  CAS  Google Scholar 

  18. Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27(8–9):1271–7.

    Article  Google Scholar 

  19. Huang Z, Gao X, Xu T, Fang Y, Zhang Z. Thermal property measurement and heat storage analysis of LiNO3/KCl–expanded graphite composite phase change material. Appl Energy. 2014;115:265–71.

    Article  CAS  Google Scholar 

  20. Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    Article  Google Scholar 

  21. Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018;98:155–62.

    Article  Google Scholar 

  22. Baby R, Balaji C. Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink. Int Commun Heat Mass Transf. 2013;46:27–30.

    Article  CAS  Google Scholar 

  23. Wang Z, Zhang Z, Jia L, Yang L. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Appl Therm Eng. 2015;78:428–36.

    Article  CAS  Google Scholar 

  24. Rehman TU, Ali HM. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim. 2019;140:979–90.

    Article  Google Scholar 

  25. Li T, Lee J-H, Wang R, Kang YT. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy. 2013;55:752–61.

    Article  CAS  Google Scholar 

  26. Weng Y-C, Cho H-P, Chang C-C, Chen S-L. Heat pipe with PCM for electronic cooling. Appl Energy. 2011;88(5):1825–33.

    Article  CAS  Google Scholar 

  27. Fok SC, Shen W, Tan FL. Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci. 2010;49(1):109–17.

    Article  CAS  Google Scholar 

  28. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55.

    Article  CAS  Google Scholar 

  29. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94.

    Article  CAS  Google Scholar 

  30. Lu TJ. Thermal management of high power electronics with phase change cooling. Int J Heat Mass Transf. 2000;43(13):2245–56.

    Article  CAS  Google Scholar 

  31. Darabi J, Ekula K. Development of a chip-integrated micro cooling device. Microelectron J. 2003;34(11):1067–74.

    Article  Google Scholar 

  32. Kim K-S, Won M-H, Kim J-W, Back B-J. Heat pipe cooling technology for desktop PC CPU. Appl Therm Eng. 2003;23(9):1137–44.

    Article  Google Scholar 

  33. PastUkhov VG, Maidanik YF, Vershinin CV, Korukov MA. Miniature loop heat pipes for electronics cooling. Appl Therm Eng. 2003;23(9):1125–35.

    Article  Google Scholar 

  34. Krishna J, Kishore PS, Solomon AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci. 2017;81:84–92.

    Article  CAS  Google Scholar 

  35. Kumar KRS, Dinesh R, Roseline AA, Kalaiselvam S. Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron Reliab. 2017;73:1–13.

    Article  Google Scholar 

  36. Motahar S, Khodabandeh R. Experimental study on the melting and solidification of a phase change material enhanced by heat pipe. Int Commun Heat Mass Transf. 2016;73:1–6.

    Article  Google Scholar 

  37. Chougule SS, Sahu SK. Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling. J Electron Packag. 2015;137(2):21004.

    Article  Google Scholar 

  38. Tiari S, Qiu S. Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes. Energy Convers Manag. 2015;105:260–71.

    Article  Google Scholar 

  39. Kline SJ. Describing uncertainty in single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H.M. Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components. J Therm Anal Calorim 146, 277–286 (2021). https://doi.org/10.1007/s10973-020-09946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09946-8

Keywords

Navigation