Skip to main content
Log in

Comparative study of mixed convection heat transfer of water–Cu nanofluid in an enclosure having multiple rotating circular cylinders with different configurations and considering harmonic cylinders rotation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, heat transfer in a lid-driven square cavity in the existence of four rotating cylinders having harmonic motion was investigated numerically for different parameters such as Richardson number (0.1 ≤ Ri ≤ 10), the volume fraction of the nanoparticles (0 ≤ ϕ ≤ 0.03) and Reynolds number (86.2 ≤ Re ≤ 862). The enclosure filled with water–Cu nanofluids. Seven different cases were studied to find the best position and diameter ratio of cylinders. The results of this study presented in term of contours, Nusselt number, velocity profile, PEC number, entropy generation. This study demonstrated that heat transfer affected by the inertial force, buoyancy force, and changing in thermophysical properties of the base-fluid. Also, we found that the combination of harmonic motion and decrease in space between walls and cylinders makes the heat transfer behavior and trend, unpredictable. Another outcome of this numerical study is the effect of adding nanoparticle to pure water. In general, increasing the concentration of nanoparticles in pure water improved the thermophysical properties of the fluid. However, in some cases, shear effects and buoyancy forces changed this improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C p :

Specific heat at constant pressure (J kg−1 K−1)

g :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Cavity height (m)

k :

Thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

p :

Pressure (Pa)

Ri:

Richardson number

Re:

Reynolds number

Ta:

Taylor number

S gen‴:

Dimensionless local total entropy generation

T :

Temperature (K)

u, v :

Velocity components in x, y direction (m s−1)

U 0 :

Dimensionless velocity of lid-driven

U, V :

Dimensionless velocity, u/U0, v/U0

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates, x/H, y/H

β :

Thermal expansion coefficient (1 K−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

θ :

Dimensionless temperature

ϕ :

Volume fraction of nanoparticles

χ :

Irreversibility factor

Ω:

Dimensionless Angular velocity

ω 0 :

Angular velocity (rad s−1)

c:

Cold

h:

Hot

bf:

Base fluid

nf:

Nanofluid

sp:

Solid particle

References

  1. Hayase T, Humphrey JAC, Greif R. Numerical calculation of convective heat transfer between rotating coaxial cylinders with periodically embedded cavities. J Heat Transf. 1992;114(3):589–97.

    Article  Google Scholar 

  2. Fu W-S, Cheng C-S, Shieh W-J. Enhancement of natural convection heat transfer of an enclosure by a rotating circular cylinder. Int J Heat Mass Transf. 1994;37(13):1885–97.

    Article  CAS  Google Scholar 

  3. Lacroix M. Natural convection heat transfer around two heated cylinders in an isothermal enclosure including the effect of wall conductance. Int J Numer Methods Heat Fluid Flow. 1994;4:465–76.

    Article  Google Scholar 

  4. Chouikh R, Guizani A, Maâlej M, Belghith A. Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders. Int Commun Heat Mass Transf. 1999;26(3):329–38.

    Article  CAS  Google Scholar 

  5. Bouhairie S, Chu VH. Two-dimensional simulation of unsteady heat transfer from a circular cylinder in crossflow. J Fluid Mech. 2007;570:177–215.

    Article  Google Scholar 

  6. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9):2002–18.

    Article  CAS  Google Scholar 

  7. Shih YC, Khodadadi JM, Weng KH, Ahmed A. Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. J Heat Transf. 2009;131(11):111701–11.

    Article  Google Scholar 

  8. Ghazanfarian J, Nobari MRH. A numerical study of convective heat transfer from a rotating cylinder with cross-flow oscillation. Int J Heat Mass Transf. 2009;52(23):5402–11.

    Article  Google Scholar 

  9. Paramane SB, Sharma A. Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int J Heat Mass Transf. 2009;52(13):3205–16.

    Article  Google Scholar 

  10. Costa VAF, Raimundo AM. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. Int J Heat Mass Transf. 2010;53(5):1208–19.

    Article  CAS  Google Scholar 

  11. Chae M-S, Chung B-J. Effect of pitch-to-diameter ratio on the natural convection heat transfer of two vertically aligned horizontal cylinders. Chem Eng Sci. 2011;66(21):5321–9.

    Article  CAS  Google Scholar 

  12. Roslan R, Saleh H, Hashim I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int J Heat Mass Transf. 2012;55(23–24):7247–56.

    Article  CAS  Google Scholar 

  13. Park YG, Yoon HS, Ha MY. Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int J Heat Mass Transf. 2012;55(25):7911–25.

    Article  Google Scholar 

  14. Chatterjee D, Mondal B, Halder P. Hydromagnetic mixed convective transport in a vertical lid-driven cavity including a heat conducting rotating circular cylinder. Numer Heat Transf Part A Appl. 2014;65(1):48–65.

    Article  CAS  Google Scholar 

  15. Nayak RK, Bhattacharyya S, Pop I. Numerical study on mixed convection and entropy generation of a nanofluid in a lid-driven square enclosure. J Heat Transf. 2015;138(1):12503–11.

    Article  Google Scholar 

  16. Sheremet AM, Oztop FH, Pop I, Abu-Hamdeh N. Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das’ model. Entropy. 2016;18(1):9.

    Article  Google Scholar 

  17. Selimefendigil F, Öztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2019;200:61–75.

    Article  Google Scholar 

  18. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  19. Kumar B, Sharma B, Barman RN. Numerical investigation of Cu–H2O nanofluid in a differentially heated square cavity with conducting square cylinder placed at arbitrary locations. In: Chandrasekhar U, Yang LJ, Gowthaman S, editors. Innovative design, analysis and development practices in aerospace and automotive engineering (I-DAD 2018). Lecture notes in mechanical engineering. Singapore: Springer: 2019

    Google Scholar 

  20. Selimefendigil F, Öztop HF. Effects of an inner stationary cylinder having an elastic rod-like extension on the mixed convection of CNT–water nanofluid in a three dimensional vented cavity. Int J Heat Mass Transf. 2019;137:650–68.

    Article  CAS  Google Scholar 

  21. Shirani N, Toghraie D, Zarringhalam M, Afrand M. Numerical simulation of transient mixed convection of water–Cu nanofluid in a square cavity with multiple rotating cylinders having harmonic motion. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09379-3.

    Article  Google Scholar 

  22. Yang Hui, Zhang Wei, Zhu Zuchao. Unsteady mixed convection in a square enclosure with an inner cylinder rotating in a bi-directional and time-periodic mode. Int J Heat Mass Transf. 2019;136:563–80.

    Article  Google Scholar 

  23. Zhang W, Wei Y, Dou H-S, Zhu Z. Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder. Int Commun Heat Mass Transf. 2018;98:143–54.

    Article  Google Scholar 

  24. Chatterjee D, Mishra R. Numerical investigation of transient MHD mixed convection in a ventilated cavity containing two heated circular cylinders. Heat Transf Eng. 2018;39(12):1052–66.

    Article  CAS  Google Scholar 

  25. Bansal S, Chatterjee D. Magneto-convective transport of nanofluid in a vertical lid-driven cavity including a heat conducting rotating circular cylinder. Numer Heat Transf Part A Appl. 2015;68(4):411–31.

    Article  CAS  Google Scholar 

  26. Gupta SK, Chatterjee D, Mondal B. Investigation of mixed convection in a ventilated cavity in the presence of a heat conducting circular cylinder. Numer Heat Transf Part A Appl. 2015;67(1):52–74.

    Article  CAS  Google Scholar 

  27. Ray S, Chatterjee D. MHD mixed convection in a lid-driven cavity including heat conducting circular solid object and corner heaters with Joule heating. Int Commun Heat Mass Transf. 2014;57:200–7.

    Article  Google Scholar 

  28. Chatterjee D, Gupta SK, Mondal B. Mixed convective transport in a lid-driven cavity containing a nanofluid and a rotating circular cylinder at the center. Int Commun Heat Mass Transf. 2014;56:71–8.

    Article  CAS  Google Scholar 

  29. Ray S, Chatterjee D. MHD mixed convection in a lid-driven cavity including heat conducting solid object and corner heaters with joule heating. Numer Heat Transf Part A Appl. 2014;66:530–50.

    Article  CAS  Google Scholar 

  30. Chatterjee D, Halder P, Mondal S, Bhattacharjee S. Magnetoconvective transport in a vertical lid-driven cavity including a heat conducting square cylinder with Joule heating. Numer Heat Transf Part A Appl. 2013;64:1050–71.

    Article  CAS  Google Scholar 

  31. Chatterjee D. MHD mixed convection in a lid-driven cavity including a heated source. Numer Heat Transf Part A Appl. 2013;64:235–54.

    Article  CAS  Google Scholar 

  32. Shahsavar A, Rashidi M, Mosghani MM, Toghraie D, Talebizadehsardari P. A numerical investigation on the influence of nanoadditive shape on the natural convection and entropy generation inside a rectangle-shaped finned concentric annulus filled with boehmite alumina nanofluid using two-phase mixture model. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09076-w.

    Article  Google Scholar 

  33. Selimefendigil F, Öztop HF. Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders. Eng Sci Technol Int J. 2015;18(3):439–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Rostami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, N., Toghraie, D. & Rostami, S. Comparative study of mixed convection heat transfer of water–Cu nanofluid in an enclosure having multiple rotating circular cylinders with different configurations and considering harmonic cylinders rotation. J Therm Anal Calorim 144, 1557–1570 (2021). https://doi.org/10.1007/s10973-020-09624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09624-9

Keywords

Navigation