Skip to main content
Log in

Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Water-cooled heat sinks now gained the popularity due to increased heat generation inside the microprocessor. The generated high heat flux should be removed timely and uniformly for durability of microprocessor. In this work, the thermal performance of mini-channel heat sinks for fin spacing of 0.2 mm, 0.5 mm, 1 mm and 1.5 mm is numerically investigated with various dual flow arrangements. A uniform temperature distribution is observed for all dual flow arrangements discussed in this study which was not possible using single flow inlet/outlet. A direct influence of dual flow arrangements on base temperature and pressure drop of heat sink is evaluated. The results are then compared with the conventional single flow arrangement having same dimensioned heat sink available in the literature for water as well as for Al2O3–H2O nano-fluids. The maximum drop in base temperature was noted for rectangular inlet–circular outlet duct (no gap) flow arrangement as 14.3%, 15.4%, 16.06% and 15.6% for 0.2 mm, 0.5 mm, 1 mm and 1.5 mm fin spacing, respectively, as compared to the conventional single flow arrangement using water as a cooling fluid. Rectangular inlet–circular outlet duct (no gap) was found to be the best dual flow arrangement for all fin spacing investigated. The rectangular collector was then replaced by isosceles triangular collector for the best dual flow arrangement. The maximum reduction in net mass was noted as 12.0%, using isosceles triangular collector as compared to rectangular collector with same thermal performance. Dual rectangular inlet–circular outlet (no gap) flow arrangement highlights palpable improvement in hydrothermal performance compared to the conventional single circular inlet/outlet flow arrangement along with temperature uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Width of finned section (mm)

A sf :

Surface area (mm2)

A c :

Cross-sectional area of channel (mm)

B :

Un-finned length (mm)

C d :

Circular duct diameter (mm)

C h :

Circular duct height (mm)

C p :

Specific heat capacity of water (J °C−1 kg−1)

d h :

Hydraulic diameter (mm)

F p :

Flow partition thickness (mm)

F t :

Flow thickness (mm)

g :

Gap thickness (mm)

h :

Height of fins (mm)

h c :

Convective heat transfer coefficient (W °C−1 m−2)

l :

Length of fins (mm)

k :

Thermal conductivity of fluid (W m−1 °C−1)

LMTD:

Log of Mean Temperature Difference (°C)

\(\dot{m}\) :

Mass flow rate (kg s−1)

P :

Wetted perimeter (m)

Pr:

Prandtl number of the fluid

ΔP :

Pressure difference (Pa)

p t :

Partition thickness (mm)

q :

Heat flux (W/cm2)

\(\dot{Q}\) :

Heat transfer rate (W)

R w :

Rectangular duct width (mm)

R h :

Rectangular duct height (mm)

R th :

Thermal resistance (°C W−1)

Re:

Reynolds number of fluid

s :

Fin spacing (mm)

T b :

Base temperature of heat sink (°C)

T o :

Fluid outlet temperature (°C)

T i :

Fluid inlet temperature (°C)

t :

Thickness of fins (mm)

t b :

Thickness of heat sink base plate (mm)

U in :

Inlet velocity (m s−1)

u, v, w :

Velocity in x, y, z, respectively (m s−1)

\(\dot{V}\) :

Volumetric flow rate (m3 s−1)

λ :

Thermal conductivity (W m−1 °C−1)

µ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density of fluid (kg m−3)

DCIRO:

Dual circular duct inlet–rectangular duct outlet

DRICO:

Dual rectangular duct inlet–circular duct outlet

DTRISRO:

Dual top rectangular duct inlet–side rectangular duct outlet

DSRITRO:

Dual side rectangular duct inlet–top rectangular duct outlet

ITC:

Isosceles triangular collector

LPM:

Litres per minute

MCHS:

Mini-channel heat sink

SCICO:

Single circular duct inlet–circular duct outlet

RC:

Rectangular collector

References

  1. Tran N, Chang Y, Teng J, Greif R. A study on five different channel shapes using a novel scheme for meshing and a structure of a multi-nozzle microchannel heat sink. Int J Heat Mass Transf. 2017;105:429–42.

    CAS  Google Scholar 

  2. Akbari O, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019;138:737–52.

    CAS  Google Scholar 

  3. Ali H, Babar H, Shah T, Sajid M, Qasim M, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587.

    Google Scholar 

  4. Ali M, Shoukat A, Tariq H, Anwar M, Ali H. Header design optimization of mini-channel heat sinks using CuO–H2O andAl2O3–H2O nanofluids for thermal management. Arab J Sci Eng. 2019;44(12):10327–38.

    CAS  Google Scholar 

  5. Anwar M, Tariq H, Shoukat A, Ali H, Ali H. Numerical study for heat transfer enhancement using CuO–H2O nano-fluids through minichannel heat sinks for microprocessor cooling. J Therm Sci. 2019. https://doi.org/10.2298/TSCI180722022A.

    Article  Google Scholar 

  6. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour S, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;138:1461–76.

    CAS  Google Scholar 

  7. Asma M, Othman W, Muhammad T. Numerical study for Darcy–Forchheimer flow of nanofluid due to a rotating disk with binary chemical reaction and Arrhenius activation energy. Mathematics. 2019;10(7):921.

    Google Scholar 

  8. Bhatti M, Zeeshan A, Tripathi D, Ellahi R. Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids. Indian J Phys. 2018;92:423–30.

    CAS  Google Scholar 

  9. Chein R, Chen J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int J Therm Sci. 2009;48:1627–38.

    CAS  Google Scholar 

  10. Dharaiya V, Radhakrishnan A, Kandlikar S. Evaluation of a tapered header configuration to reduce flow maldistribution in minichannels and microchannels. In: Proceedings of the ASME 2009 7th international conference on nanochannels, microchannels and minichannels. Pohang, South Korea; 2009.

  11. Effat M, AbdelKarim M, Hassan O, Abdelgawad M. Numerical investigations of the effect of flow arrangement and number of layers on the performance of multi-layer microchannel heat sinks. In: Proceedings of the ASME 2015 international mechanical engineering congress and exposition. Houston, Texas; 2016.

  12. Gan T, Ming T, Fang W, Liu Y, Miao L, Ren K, et al. Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08754-z.

    Article  Google Scholar 

  13. Hadipour A, Zargarabadi M, Dehghan M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09232-2.

    Article  Google Scholar 

  14. Hamza B, Usman S, Ali H. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23(3):1713–54.

    Google Scholar 

  15. Hao X, Wu Z, Chen X, Xie G. Numerical analysis and optimization on flow distribution and heat transfer of a U-type parallel channel heat sink. Adv Mech Eng. 2014;7(2):672451.

    Google Scholar 

  16. Hayat T, Saif R, Ellahi R, Muhammad T, Alsaedi A. Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness. Int J Therm Sci. 2018;132:344–54.

    Google Scholar 

  17. Ho CJ, Wei LC, Li ZW. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng. 2010;30(2–3):96–103.

    CAS  Google Scholar 

  18. Hosseinalipou S, Rashidzadeh S, Moghimi M, Esmailpour K. Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09225-1.

    Article  Google Scholar 

  19. Jajja SA, Ali W, Ali HM, Ali AM. Water cooled minichannel heat sinks for microprocessor cooling: effect of fin spacing. Appl Therm Eng. 2014;64:76–82.

    CAS  Google Scholar 

  20. Kumar S, Singh P. A novel approach to manage temperature non-uniformity in minichannel heat sink by using intentional flow maldistribution. Appl Therm Eng. 2019;163:114403.

    Google Scholar 

  21. Kumaran R, Kumaraguruparan G, Sornakumar T. Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels. Appl Therm Eng. 2013;58:205–16.

    Google Scholar 

  22. Manay E, Sahin B. Heat transfer and pressure drop of nanofluids in a microchannel heat sink. Heat Transf Eng. 2016;38(5):510–22.

    Google Scholar 

  23. Miry S, Roshani M, Hanafizadeh P, Ashjaee M, Amini F. Heat transfer and hydrodynamic performance analysis of a miniature tangential heat sink using Al2O3–H2O and TiO2–H2O nanofluids. Exp Heat Transf. 2016;29(4):536–60.

    CAS  Google Scholar 

  24. Mu Y, Chen L, He Y, Tao W. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. Int J Heat Mass Transf. 2015;85:147–57.

    Google Scholar 

  25. Muhammad T, Lu D, Mahanthesh B, Eid M, Ramzan M, Dar A. Significance of Darcy–Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys. 2018;70:361. https://doi.org/10.1088/0253-6102/70/3/361.

    Article  CAS  Google Scholar 

  26. Neyestani M, Nazari M, Shahmardan M, Sharifpur M, Ashouri M, Meye J. Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. J Therm Anal Calorim. 2019;138:805–17.

    CAS  Google Scholar 

  27. Patankar S. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980.

    Google Scholar 

  28. Prakash J, Siva E, Tripathi D, Kuharat S, Anwar Bég O. Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump. Renew Energy. 2019;133:1308–26.

    CAS  Google Scholar 

  29. Prakash J, Tripathi D, Tiwari A, Sait S, Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry. 2019;11(7):868.

    CAS  Google Scholar 

  30. Qiu T, Wen D, Hong W, Liu Y. Heat transfer performance of a porous copper micro-channel heat sink. J Therm Anal Calorim. 2020;139:1453–62.

    CAS  Google Scholar 

  31. Rafati M, Hamidi AA, Niaser MS. Applications of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45:9–14.

    Google Scholar 

  32. Rohsenow W, Hartnett W. Handbook of heat transfer. New York: McGraw-Hill; 1973.

    Google Scholar 

  33. Roshani M, Miry S, Hanafizadeh P, Ashjaee M. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3–water and TiO2–water nanofluids. J Therm Sci Eng Appl. 2015;7(3):031007-1.

    Google Scholar 

  34. Saeed M, Kim M. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf. 2018;120:671–82.

    CAS  Google Scholar 

  35. Saeed M, Kim M. Numerical study on thermal hydraulic performance of water cooled mini-channel heat sinks. Int J Refrig. 2016;69:147–64.

    Google Scholar 

  36. Saif R, Hayat T, Ellahi R, Muhammad T, Alsaedi A. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int J Numer Methods Heat Fluid Flow. 2019;29(1):2–20.

    Google Scholar 

  37. Saif R, Muhammad T, Sadia H, Ellahi R. Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.124060.

    Article  Google Scholar 

  38. Sajid M, Ali H. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    CAS  Google Scholar 

  39. Sajid M, Ali H. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  40. Sajid M, Ali H, Sufyan A, Rashid D, Zahid S, Rehman W. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    CAS  Google Scholar 

  41. Sehgal S, Murugesan K, Mohapatra S. Experimental investigation of the effect of flow arrangements on the performance of a micro-channel heat sink. Exp Heat Transf. 2011;24:215–33.

    CAS  Google Scholar 

  42. Shen H, Zhang Y, Yan H, Sunden B, Xie G. Convective heat transfer of parallel-flow and counter-flow double-layer microchannel heat sinks in staggered arrangement. In: Proceedings of the ASME 2017 international mechanical engineering congress and exposition. Tampa, Florida; 2018.

  43. Soudagar M, Kalam M, Sajid M, Afzal A, Banapurmath N, Akram N, et al. Thermal analyses of minichannels and use of mathematical and numerical models. Numer Heat Transf Part A Appl. 2020;77(5):497–537.

    CAS  Google Scholar 

  44. Tao W. Numerical heat transfer. 2nd ed. Xi’an: Xi’an Jiaotong University Press; 2001.

    Google Scholar 

  45. Tariq HA, Shoukat AA, Anwar M, Israr A, Ali HM. Water cooled micro-hole cellular structure as a heat dissipation media: an experimental and numerical study. J Therm Sci. 2018. https://doi.org/10.2298/TSCI180219184T.

    Article  Google Scholar 

  46. Tariq H, Anwar M, Malik A. Numerical investigations of mini-channel heat sink for microprocessor cooling: effect of slab thickness. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04370-4.

    Article  Google Scholar 

  47. Tariq H, Israr A, Khan Y, Anwar M. Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf. 2019;55(2):501–11.

    Google Scholar 

  48. Tariq H, Shoukat A, Hassan M, Anwar M. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J Therm Anal Calorim. 2019;136(5):2171–82.

    CAS  Google Scholar 

  49. Toghraie D, Abdollah M, Pourfattah F, Akbari O, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131:1757–66.

    CAS  Google Scholar 

  50. Wahab A, Hassan A, Qasim M, Ali H, Babar H, Sajid M. Solar energy systems—potential of nanofluids. J Mol Liq. 2019;289:111049.

    CAS  Google Scholar 

  51. Wang W, Li Y, Zhang Y, Li B, Sundén B. Analysis of laminar flow and heat transfer in an interrupted microchannel heat sink with different shaped ribs. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09156-x.

    Article  Google Scholar 

  52. Xie XL, Tao WQ, He YL. Numerical study of turbulent heat transfer and pressure drop characteristics in water-cooled minichannel heat sink. J Electron Packag. 2007;129:247–55.

    Google Scholar 

  53. Zunaid M, Jindal A, Gakhar D, Sinha A. Numerical study of pressure drop and heat transfer in a straight rectangular and semi cylindrical projections microchannel heat sink. J Therm Eng. 2017;3(5):1453–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, H.A., Anwar, M., Ali, H.M. et al. Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study. J Therm Anal Calorim 143, 2011–2027 (2021). https://doi.org/10.1007/s10973-020-09617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09617-8

Keywords

Navigation