Skip to main content
Log in

Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aimed at presenting a steady-state analytical solution for the two-dimensional heat conduction in a cylindrical segment made of functionally graded materials. It is acquired by taking advantage of the Fourier transform and separation of variables rather than numerical methods. Sturm–Liouville theory is employed to find the proper and adequate Fourier transformation. Continuous variations along the radial and circumferential directions based on the power-law function are taken into account, and non-homogeneous boundary conditions are applied to the problem. The obtained formulation is verified by the available solutions. Through solving an illustrative example, the temperature distribution is deliberated for a combination of boundary conditions. It is to be emphasized that mathematical robustness and generality of the solution are its primary advantage which is not often seen in the previously published literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Inner radius

b :

Outer radius

C n, D n :

The constant coefficient order n

c p :

Specific heat capacity

F :

Fourier transformation

\(k_{{\text{R}}} ,k_{\varPhi }\) :

The coefficients of heat conductivity in both R and \(\varPhi\) directions

q″:

Heat flux (W m−2)

X :

Independent function of R

\(R, \varPhi\) :

Cylindrical segment coordinate system

\(\varTheta\) :

Temperature distribution

\(\alpha , \mu\) :

Constant coefficient (W m−2 K−1)

\(\eta , \beta , \nu\) :

Constant coefficient (W m−1 K−1)

\(\varGamma\) :

Independent function of \(\varPhi\)

\(\varrho\) :

Density

\(\varDelta_{{\text{n}}}\) :

Separation constant

\(\lambda\) :

Conductivity ratio

\(\gamma\) :

Material constant coefficient

References

  1. Lighthill MJ, Lighthill MJ. An introduction to Fourier analysis and generalised functions. Cambridge: Cambridge University Press; 1958.

    Google Scholar 

  2. Osgood BG. Lectures on the Fourier transform and its applications. Providence: American Mathematical Society; 2019.

    Google Scholar 

  3. Kayhani M, Norouzi M, Delouei AA. A general analytical solution for heat conduction in cylindrical multilayer composite laminates. Int J Therm Sci. 2012;52:73–82.

    Google Scholar 

  4. Andersson F, Carlsson M, Nikitin VV. Fast Laplace transforms for the exponential Radon transform. J Fourier Anal Appl. 2018;24(2):431–50.

    Google Scholar 

  5. Arpaci VS, Arpaci VS. Conduction heat transfer. MA: Addison-Wesley Reading; 1966.

    Google Scholar 

  6. Grząbka-Zasadzińska A, Klapiszewski Ł, Bula K, Jesionowski T, Borysiak S. Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. J Therm Anal Calorim. 2016;126(1):263–75.

    Google Scholar 

  7. Wen R, Jia P, Huang Z, Fang M, Liu Y, Wu X, et al. Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. J Therm Anal Calorim. 2018;132(3):1753–61.

    CAS  Google Scholar 

  8. Reyes-Melo M, Rentería-Baltiérrez F, López-Walle B, López-Cuellar E, de Araujo C. Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon. J Therm Anal Calorim. 2016;126(2):593–9.

    CAS  Google Scholar 

  9. Stein EM, Shakarchi R. Fourier analysis: an introduction. Princeton: Princeton University Press; 2011.

    Google Scholar 

  10. Chen Z, Akbarzadeh A. Basic problems of non-Fourier heat conduction. In: Advanced thermal stress analysis of smart materials and structures. Cham: Springer; 2020. p. 23–63. https://doi.org/10.1007/978-3-030-25201-4_2.

  11. Zhang X-Y, Chen Z-T, Li X-F. Generalized fractional heat conduction in a one-dimensional functionally graded material layer. J Thermophys Heat Transf. 2019;33(4):946–56.

    CAS  Google Scholar 

  12. Norouzi M, Delouei AA, Seilsepour M. A general exact solution for heat conduction in multilayer spherical composite laminates. Compos Struct. 2013;106:288–95.

    Google Scholar 

  13. Shahmardan MM, Norouzi M, Kayhani MH, Delouei AA. An exact analytical solution for convective heat transfer in rectangular ducts. J Zhejiang Univ Sci A. 2012;13(10):768–81.

    CAS  Google Scholar 

  14. Miyamoto Y, Kaysser W, Rabin B, Kawasaki A, Ford RG. Functionally graded materials: design, processing and applications. Berlin: Springer; 2013.

    Google Scholar 

  15. Karimnejad S, Amiri Delouei A, Nazari M, Shahmardan MM, Rashidi MM, Wongwises S. Immersed boundary-thermal lattice Boltzmann method for the moving simulation of non-isothermal elliptical particles. J Therm Anal Calorim. 2019;138:4003–17.

    CAS  Google Scholar 

  16. Leszczynska A, Pielichowski K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim. 2008;93(3):677–87.

    CAS  Google Scholar 

  17. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al 2 O 3 nanoparticles. J Therm Anal Calorim. 2019;136(6):2477–85.

    CAS  Google Scholar 

  18. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135(6):3029–42.

    CAS  Google Scholar 

  19. Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    CAS  Google Scholar 

  20. Karimnejad S, Amiri Delouei A, Nazari M, Shahmardan MM, Ahmadi G, Mofakham AA, editors. Inclusion of heat transfer on settling behavior of elliptical particles: immersed boundary-thermal lattice Boltzmann method. In: ASME-JSME-KSME 2019 8th joint fluids engineering conference, San Francisco, California, USA, July 28–August 1, 2019. Paper No: AJKFluids2019-5676, V005T05A067; 8 pp. https://doi.org/10.1115/AJKFluids2019-5676.

  21. Norouzi M, Emamian A, Davoodi M. An analytical and experimental study on dynamics of a circulating Boger drop translating through Newtonian fluids at inertia regime. J Nonnewton Fluid Mech. 2019;267:1–13.

    CAS  Google Scholar 

  22. Jalali A, Amiri Delouei A, Khorashadizadeh M, Golmohamadi A, Karimnejad S. Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: temperature-dependent viscosity. J Appl Comput Mech. 2020;6(2):307–19.

    Google Scholar 

  23. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Google Scholar 

  24. Li Z, Shahsavar A, Al-Rashed AA, Kalbasi R, Afrand M, Talebizadehsardari P. Multi-objective energy and exergy optimization of different configurations of hybrid earth-air heat exchanger and building integrated photovoltaic/thermal system. Energy Convers Manag. 2019;195:1098–110.

    Google Scholar 

  25. Li Z, Al-Rashed AA, Rostamzadeh M, Kalbasi R, Shahsavar A, Afrand M. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: effects of repositioning, thermophysical properties and thickness of PCM. Energy Convers Manag. 2019;195:43–56.

    Google Scholar 

  26. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  27. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, et al. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Google Scholar 

  28. Carslaw HS, Jaeger JC. Conduction of heat in solids. 2nd ed. Oxford: Clarendon Press; 1959.

    Google Scholar 

  29. Li H-C, Ke L-L, Yang J, Kitipornchai S, Wang Y-S. Free vibration of variable thickness FGM beam submerged in fluid. Compos Struct. 2020;233:111582.

    Google Scholar 

  30. Delouei AA, Emamian A, Karimnejad S, Sajjadi H, Tarokh A. On 2D asymmetric heat conduction in functionally graded cylindrical segments: a general exact solution. Int J Heat Mass Transf. 2019;143:118515.

    Google Scholar 

  31. Delouei AA, Emamian A, Karimnejad S, Sajjadi H. A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. Int Commun Heat Mass Transf. 2019;108:104280.

    Google Scholar 

  32. Campo A, Arıcı M. Semi–analytical, piecewise temperature–time distributions in solid bodies of regular shape affected by uniform surface heat flux employing the Method Of Lines (MOL) and the eigenvalue method. Int Commun Heat Mass Transf. 2019;108:104276.

    Google Scholar 

  33. Reichardt A, Shapiro AA, Otis R, Dillon RP, Borgonia JP, McEnerney BW, et al. Advances in additive manufacturing of metal-based functionally graded materials. Int Mater Rev. 2020. https://doi.org/10.1080/09506608.2019.1709354.

    Article  Google Scholar 

  34. Leong K, Chua SC, Sudarmadji N, Yeong W. Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater. 2008;1(2):140–52.

    CAS  PubMed  Google Scholar 

  35. Han C, Li Y, Wang Q, Wen S, Wei Q, Yan C, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater. 2018;80:119–27.

    CAS  PubMed  Google Scholar 

  36. Rikhtegar F, Shabestari S. Investigation on solidification conditions in functionally Si-gradient Al alloys using simulation and cooling curve analysis methods. J Therm Anal Calorim. 2014;117(2):721–9.

    CAS  Google Scholar 

  37. Burlayenko V, Altenbach H, Sadowski T, Dimitrova S, Bhaskar A. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl Math Model. 2017;45:422–38.

    Google Scholar 

  38. Delouei AA, Kayhani M, Norouzi M. Exact analytical solution of unsteady axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates. Int J Heat Mass Transf. 2012;55(15–16):4427–36.

    Google Scholar 

  39. Bobbio LD, Bocklund B, Reichardt A, Otis R, Borgonia JP, Dillon RP, et al. Analysis of formation and growth of the σ phase in additively manufactured functionally graded materials. J Alloys Compd. 2020;814:151729.

    CAS  Google Scholar 

  40. Liew KM, Pan Z, Zhang L-W. The recent progress of functionally graded CNT reinforced composites and structures. Sci China Phys Mech Astron. 2020;63(3):234601.

    CAS  Google Scholar 

  41. Naebe M, Shirvanimoghaddam K. Functionally graded materials: a review of fabrication and properties. Appl Mater Today. 2016;5:223–45.

    Google Scholar 

  42. Malekzadeh P, Nejati R. Non-fourier heat transfer analysis of functionally graded spherical shells under convection-radiation conditions. J Oil Gas Petrochem Technol. 2014;1(1):73–86.

    Google Scholar 

  43. Delouei AA, Norouzi M. Exact analytical solution for unsteady heat conduction in fiber-reinforced spherical composites under the general boundary conditions. J Heat Transf. 2015;137(10):101701.

    Google Scholar 

  44. Keles I, Conker C. Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties. Eur J Mech A/Solids. 2011;30(3):449–55.

    Google Scholar 

  45. Tarn J-Q, Wang Y-M. End effects of heat conduction in circular cylinders of functionally graded materials and laminated composites. Int J Heat Mass Transf. 2004;47(26):5741–7.

    Google Scholar 

  46. Alibeigloo A. Exact solution for thermo-elastic response of functionally graded rectangular plates. Compos Struct. 2010;92(1):113–21.

    Google Scholar 

  47. Jin G, Ye T, Jia X, Gao S. A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints. Compos Struct. 2014;109:150–68.

    Google Scholar 

  48. Zhang H, Shi D, Zha S, Wang Q. A modified Fourier solution for sound-vibration analysis for composite laminated thin sector plate-cavity coupled system. Compos Struct. 2019;207:560–75.

    Google Scholar 

  49. Babaei M, Chen Z. Hyperbolic heat conduction in a functionally graded hollow sphere. Int J Thermophys. 2008;29(4):1457–69.

    CAS  Google Scholar 

  50. Shirmohammadi R, Moosaie A. Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux. Int Commun Heat Mass Transf. 2009;36(8):827–33.

    Google Scholar 

  51. Bayat Y, Ghannad M, Torabi H. Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch Appl Mech. 2012;82(2):229–42.

    Google Scholar 

  52. Shao Z, Ang K, Reddy J, Wang T. Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders. J Therm Stress. 2008;31(6):515–36.

    Google Scholar 

  53. Molaei Najafabadi M, Taati E, Basirat Tabrizi H. Optimization of functionally graded materials in the slab symmetrically surface heated using transient analytical solution. J Therm Stress. 2014;37(2):137–59.

    Google Scholar 

  54. de Monte F. An analytic approach to the unsteady heat conduction processes in one-dimensional composite media. Int J Heat Mass Transf. 2002;45(6):1333–43.

    Google Scholar 

  55. Chung Y-L, Chang H-X. Mechanical behavior of rectangular plates with functionally graded coefficient of thermal expansion subjected to thermal loading. J Therm Stress. 2008;31(4):368–88.

    Google Scholar 

  56. Alinaghizadeh F, Shariati M. Static analysis of variable thickness two-directional functionally graded annular sector plates fully or partially resting on elastic foundations by the GDQ method. J Braz Soc Mech Sci Eng. 2015;37(6):1819–38.

    Google Scholar 

  57. Hosseini SM, Akhlaghi M, Shakeri M. Transient heat conduction in functionally graded thick hollow cylinders by analytical method. Heat Mass Transf. 2007;43(7):669–75.

    Google Scholar 

  58. Jabbari M, Sohrabpour S, Eslami M. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. J Appl Mech. 2003;70(1):111–8.

    Google Scholar 

  59. Bafekrpour E, Simon GP, Yang C, Habsuda J, Naebe M, Fox B. Effect of compositional gradient on thermal behavior of synthetic graphite–phenolic nanocomposites. J Therm Anal Calorim. 2012;109(3):1169–76.

    CAS  Google Scholar 

  60. Qu W, Fan C-M, Zhang Y. Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method. Int J Heat Mass Transf. 2019;145:118771.

    Google Scholar 

  61. Xi Q, Fu Z-J, Rabczuk T. An efficient boundary collocation scheme for transient thermal analysis in large-size-ratio functionally graded materials under heat source load. Comput Mech. 2019;64:1221–35.

    Google Scholar 

  62. Zhou H, Qin G, Wang Z. Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least-square method with temperature-dependent material properties. Numer Heat Transf Part B Fundam. 2019;75(5):312–24.

    Google Scholar 

  63. Kayhani M, Shariati M, Nourozi M, Demneh MK. Exact solution of conductive heat transfer in cylindrical composite laminate. Heat Mass Transf. 2009;46(1):83.

    CAS  Google Scholar 

  64. Norouzi M, Niya SR, Kayhani M, Shariati M, Demneh MK, Naghavi M. Exact solution of unsteady conductive heat transfer in cylindrical composite laminates. J Heat Transf. 2012;134(10):101301.

    Google Scholar 

  65. Kakaç S, Yener Y, Naveira-Cotta CP. Heat conduction. Boca Raton: CRC Press; 2018.

    Google Scholar 

  66. Siegel R. Thermal radiation heat transfer. Boca Raton: CRC Press; 2001.

    Google Scholar 

Download references

Acknowledgements

Dr. Jing gratefully acknowledges the financial support of the National Key Research and Development Program of China (Grant No. 2018YFB1502000), National Natural Science Foundation of China (Grant No. 51961130386), Royal Society-Newton Advanced Fellowship (Grant No. NAF\R1\191163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Amiri Delouei or Dengwei Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri Delouei, A., Emamian, A., Karimnejad, S. et al. Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions. J Therm Anal Calorim 144, 611–621 (2021). https://doi.org/10.1007/s10973-020-09482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09482-5

Keywords

Navigation