Skip to main content
Log in

Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ferrofluids are type of colloidal systems which are known as an important group of smart materials. Their physical properties adaptively change with magnetic strength. These characteristics of ferrofluid must be applied for improving the efficiency. In this work, thermal performance of a type of ferrofluid with a viscosity correlation dependence on temperature, magnetic field and volume fraction was scrutinized. FVM is applied for solving momentum, conservation and heat transfer equation. To consider the effect of solid part in thermal behavior of system, the conjugate heat transfer was considered. The wire is placed in the bottom of channel, and the equation of non-uniform external magnetic field is defined as user function. The results indicated in a comparison of studied parameters as non-dimensional variables, it is demonstrated magnetic number and wave amplitude result in the maximum impact on improving Nu and the worst impact on friction coefficient and pressure loss correspondence to volume fraction and Reynolds number. The results also predicted significant changes in viscosity under influence of effective parameters, especially Kelvin force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    Article  CAS  Google Scholar 

  2. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133(1):1–4.

    Article  CAS  Google Scholar 

  3. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  4. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of Nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  5. Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Thermal Fluid Sci. 2015;60:83–95.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  7. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08979-y.

  8. Sheikholeslami M, Rezaeianjouybari B, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    Article  CAS  Google Scholar 

  9. Sheikholeslami M, Sadoughi MK. Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    Article  CAS  Google Scholar 

  12. Sheikholeslami M, Barzegar Gerdroodbary M, Shafee A, Tlili I (2019) Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

  13. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  14. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  15. Ma X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T, Li Z. Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Cleaner Prod. 2020;245:118888. https://doi.org/10.1016/j.jclepro.2019.118888.

    Article  CAS  Google Scholar 

  16. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  17. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger, Review. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

  18. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    Article  CAS  Google Scholar 

  21. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. Int J Hydrogen Energy. 2017;42:821–9.

    Article  CAS  Google Scholar 

  23. Sheikholeslami Mohsen. Lattice Boltzmann method simulation of MHD non-Darcy nanofluid free convection. Phys B. 2017;516:55–71.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  26. Rosa AP, Cunha FR. The influence of dipolar particle interactions on the magnetization and the rotational viscosity of ferrofluids. Phys Fluids. 2019;31:052006.

    Article  CAS  Google Scholar 

  27. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  28. Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.

    Article  Google Scholar 

  29. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  31. Li Z, Li D, Cui H, Zhang Y, Wang H. Influence of the carrier fluid viscosity on the rotational and oscillatory rheological properties of ferrofluids. J Nanosci Nanotechnol. 2019;19:5572–81.

    Article  CAS  PubMed  Google Scholar 

  32. Rostamian H, Lotfollahi MN. A novel statistical approach for prediction of thermal conductivity of CO2 by response surface methodology. Physica A. 2019;527:121175.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Article  Google Scholar 

  37. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based Nanofluid. An experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  39. Taslimifar M, Mohammadi M, Afshin H, Saidi MH. Overall thermal performance of ferro fluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41.

    Article  CAS  Google Scholar 

  40. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Thermal Eng. 2017;116:56–65.

    Article  CAS  Google Scholar 

  41. Khoshmehr HH, Saboonchi A, Shafii MB, Jahani N. The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid. Appl Therm Eng. 2014;64:331–8.

    Article  CAS  Google Scholar 

  42. Ahmad B, Iqbal Z. Framing the performance of variation in resistance on viscous dissipative transport of ferro fluid with homogeneous and heterogeneous reactions. J Mol Liq. 2017;241:904–11.

    Article  CAS  Google Scholar 

  43. Strek T, Jopek H. Computer simulation of heat transfer through a ferrofluid. J Solid State Phys. 2006;244:1027–37.

    Article  CAS  Google Scholar 

  44. Shima A, Philip PD. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C. 2011;115:20097–104.

    Article  CAS  Google Scholar 

  45. Rabbi KM, Sheikholeslami M, Karim A, Shafee A, Li Z, Tlili I. Prediction of MHD flow and entropy generation by artificial neural network in square cavity with heater-sink for nanomaterial. Physica A Stat Mech Appl Physica A. 2020;541:123520.

    Article  CAS  Google Scholar 

  46. Sheikholeslami M, Nematpour Keshteli A, Babazadeh H. Nanoparticles favorable effects on performance of thermal storage units. J Mol Liq, 2020. https://doi.org/10.1016/j.molliq.2019.112329.

  47. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via Non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  48. Sheikholeslami Mohsen, Seyednezhad Mohadeseh. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  49. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H, Utilizing copper oxide nanoparticles for expedition of solidification within a storage system. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2019.112371.

  50. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  51. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transfer. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  52. Rezaeianjouybari B, Sheikholeslami M, Shafee A, Babazadeh H, A Novel Bayesian optimization for flow condensation enhancement using nanorefrigerant: a combined analytical and experimental study. Chem Eng Sci, 2020. https://doi.org/10.1016/j.ces.2019.115465.

  53. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    Article  CAS  Google Scholar 

  54. Sheikholeslami Mohsen, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.

    Article  CAS  Google Scholar 

  55. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Article  Google Scholar 

  56. Sheikholeslami M, Sadoughi M. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    Article  CAS  Google Scholar 

  58. Sheikholeslami M, Bhatti MM. Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf. 2017;109:115–22.

    Article  CAS  Google Scholar 

  59. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    Article  CAS  Google Scholar 

  60. Qin Y, Liang J, Yang H, Deng Z. Gas permeability of pervious concrete and its implications on the application of pervious pavements. Measurement. 2016;78:104–10.

    Article  Google Scholar 

  61. Sheikholeslami M. Numerical modeling of Nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    Article  CAS  Google Scholar 

  62. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  63. Sheikholeslami Mohsen. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  64. Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.

    Article  Google Scholar 

  65. Gavili A, Zabihi F, Dallali Isfahani T, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci. 2012;41:94–8.

    Article  CAS  Google Scholar 

  66. Mehrali M, Sadeghinezhad E, Akhiani AR, Tahan Latibari S, Simon H, Metselaar C, Kherbeet A. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field. Powder Technol. 2017;308:149–57.

    Article  CAS  Google Scholar 

  67. Abdel-wahed MS. Magneto hydrodynamic Ferro-Nano fluid flow in a semi-porous curved tube under the effect of hall current and nonlinear thermal radiative. J Magn Magn Mater. 2019;474:347–54.

    Article  CAS  Google Scholar 

  68. Qin Y, He H, Ou X, Bao T, Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Product 118235. 2019. Doi: 10.1016/j.jclepro.2019.118235.

  69. Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  70. Sheikholeslami Mohsen. Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrog Energy. 2017;42:19611–21.

    Article  CAS  Google Scholar 

  71. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  72. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  73. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  74. Sheikholeslami Mohsen. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  75. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Article  Google Scholar 

  76. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf. 2017;106:1261–9.

    Article  CAS  Google Scholar 

  77. Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf. 2017;106:745–55.

    Article  CAS  Google Scholar 

  78. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    Article  CAS  Google Scholar 

  79. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Article  Google Scholar 

  80. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    Article  CAS  Google Scholar 

  81. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  82. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Article  Google Scholar 

  83. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    Article  CAS  Google Scholar 

  84. Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    Article  CAS  Google Scholar 

  85. Qin Y, He H. A new simplified method for measuring the albedo of limited extent targets. Solar Energy. 2017;157(Supplement C):1047–55.

    Article  Google Scholar 

  86. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    Article  CAS  Google Scholar 

  87. Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf. 2017;107:288–99.

    Article  CAS  Google Scholar 

  88. Qin Y, He Y, Wu B, Ma S, Zhang X. Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 2017;156(1):218–24.

    Article  Google Scholar 

  89. Krishna Shah R, Khandekar S. Exploring ferrofluids for heat transfer augmentation. J Magn Magn Mater. 2019;475:389–400.

    Article  CAS  Google Scholar 

  90. Hao T, Ma H, Ma X. Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluids. Int J Heat Mass Transf. 2019;131:109–20.

    Article  CAS  Google Scholar 

  91. Sheikholeslami Mohsen, Vajravelu Kuppalapalle, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    Article  CAS  Google Scholar 

  92. Wang L, Wang Y, Yan X, Wang X, Feng B. Investigation on viscosity of Fe3O4 nano-fluid under magnetic field. Int Commun Heat Mass Transf. 2016;475:23–8.

    Article  CAS  Google Scholar 

  93. Phillips RJ. Micro channel heat sinks. Adv Thermal Model Electron Compon Syst. 1992;2:109–84.

    Google Scholar 

  94. Aminfar H, Mohammadpourfard M, Zonouzi SA. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater. 2013;327:31–42.

    Article  CAS  Google Scholar 

  95. Tzirtzilakis EE, Xenos MA. Bio-magnetic fluid flow in a driven cavity. Meccanica. 2013;48:187–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, H.K., Baghbani, S.S. & Babazadeh, H. Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force. J Therm Anal Calorim 143, 3849–3866 (2021). https://doi.org/10.1007/s10973-020-09324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09324-4

Keywords

Navigation