Skip to main content
Log in

Thermal analysis for radiative flow of magnetized Maxwell fluid over a vertically moving rotating disk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current framework, we study the chemically reactive Maxwell fluid flow over a vertically moving upward/downward rotating disk during the unsteady motion in the presence of magnetic flux. The problem formulation is made in a manner that governing equations of the physical phenomenon ultimately reduce to classical von Karman viscous pumping problem in the absence of vertical motion. Additionally, the aspects of chemical reaction and nonlinear radiations on heat and mass transfer analysis are studied. For the analysis, we use the similarity transformations that convert the governing system of partial differential equations into ordinary ones. The solution of the transformed system is obtained numerically using bvp4c in MATLAB. The numerical outcomes are demonstrated through graphical and tabular depictions. The results of velocity, temperature and concentration fields are discussed in the presence of upward/downward motion of the disk, magnetic parameter, Deborah number, Schmidt number and chemical reaction parameter. Significant outcomes reveal that the impact of disk upward motion parameter boosts the radial and angular flows. It is further noted that the heat transfer rate grows considerably with the disk rotation and radiation parameters. Moreover, Schmidt and chemical reaction parameters play a vital role in enhancing the Sherwood number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(r,\varphi ,z\) :

Cylindrical coordinate

\(u,\,v,\,w\) :

Velocity components \(( \mathrm{m\,s}^{-1})\)

a(t):

Vertical distance (m)

\(\dot{a}(t)\) :

Vertical velocity \(( \mathrm{m\,s}^{-1})\)

h :

Location of vertically moving disk (m)

T :

Temperature of fluid (k)

\(\Omega (t)\) :

Angular velocity \((\mathrm{rad\,s}^{-1})\)

S :

Up/down motion of disk \(( \mathrm{m\,s}^{-1})\)

\(\lambda _{1}\) :

Relaxation time parameter

\(\nu\) :

Kinematic viscosity \((\mathrm{m}^{2}\,\mathrm{s})\)

M :

Magnetic field

F :

Dimensionless radial velocity

H :

Dimensionless axial velocity

\(\theta _{\mathrm{w}}\) :

Temperature ratio parameter

\(B_{0}\) :

Magnetic field strength \(( \mathrm{N}\,\mathrm{s}\,\mathrm{C}^{-1}\,\mathrm{m}^{-1})\)

D :

Diffusion coefficient

\(\mathrm{Kr}\) :

Reaction rate

c :

Arbitrary constant

\(\gamma\) :

Biot number

\(\alpha _{1}\) :

Wall temperature parameter

\(\alpha _{2}\) :

Wall concentration parameter

\(\alpha\) :

Thermal diffusivity \((\mathrm{m}^{2}\, \mathrm{s}^{-1})\)

Re:

Reynolds number

\(T_{\infty }\) :

Ambient fluid temperature (K)

\(T_{\mathrm{w}}(t)\) :

Wall temperature (K)

\(\rho c_{\mathrm{p}}\) :

Heat capacity of fluid \(( \mathrm{J}\,\mathrm{m}^{-2}\, \mathrm{K}^{-1})\)

\(\eta\) :

Dimensionless variable

\(\theta\) :

Dimensionless temperature

\(\omega\) :

Rotation parameter

\(C_{\infty }\) :

Ambient concentration

\(C_{\mathrm{w}}(t)\) :

Wall concentration

\(\beta _{1}\) :

Deborah number

G :

Dimensionless azimuthal velocity

\(q_{\mathrm{rad}}\) :

Radiative heat flux \(( \mathrm{W}\,\mathrm{m}^{-2})\)

\(\phi\) :

Dimensionless concentration

\(\mathrm{Nu}_{\mathrm{r}}\) :

Local Nusselt number

\(\mathrm{Sh}_{\mathrm{r}}\) :

Local Sherwood number

\(\rho\) :

Fluid density \((\mathrm{kg}\,\mathrm{m}^{-3})\)

\(\mathrm{Pr}\) :

Prandtl number

\(\delta\) :

Boundary layer thickness

\(\mathrm{Rd}\) :

Radiation parameter

\(\mu\) :

Dynamic viscosity \((\mathrm{kg}\,\mathrm{m}^{-1}\,\mathrm{s}^{-1})\)

References

  1. Shevchuk V. Modelling of convective heat and mass transfer in rotating flows. Berlin: Springer; 2016.

    Google Scholar 

  2. Von Karman T. Uber laminare und turbulente reibung. Z Angew Math Mech. 1921;1:233–52.

    Google Scholar 

  3. Millsaps K, Pohlhausen K. Heat transfer by laminar flow from a rotating plate. J Aeronaut Sci. 1952;19:120–6.

    Google Scholar 

  4. Stuart JT. On the effects of uniform suction on the steady flow due to a rotating disk. Q J Mech Appl Math. 1954;7:446–57.

    Google Scholar 

  5. Riley N. The heat transfer from a rotating disk. Q J Mech Appl Math. 1964;17:331–49.

    Google Scholar 

  6. Benton ER. On the flow due to a rotating disk. J Fluid Mech. 1966;24:781–800.

    Google Scholar 

  7. Kuiken HK. The effect of normal blowing on the flow near a rotating disk of infinite extent. J Fluid Mech. 1971;47:789–98.

    Google Scholar 

  8. Watson LT, Wang CY. Deceleration of a rotating disk in a viscous fluid. Phys Fluids. 1979;22:2267–9.

    Google Scholar 

  9. Fang T, Tao H. Unsteady viscous flow over a rotating stretchable disk with deceleration. Commun Nonlinear Sci Numer Simul. 2012;17(12):5064–72.

    Google Scholar 

  10. Turkyilmazoglu M, Uygun N. Basic compressible flow over a rotating disk. Hacettepe J Math Stat. 2004;33:1–10.

    Google Scholar 

  11. Miklavcic M, Wang CY. The flow due to a rough rotating disk. Z Angew Math Phys. 2004;55:235–46.

    Google Scholar 

  12. Turkyilmazoglu M. The MHD boundary layer flow due to a rough rotating disk. Z Angew Math Mech. 2010;90:72–82.

    Google Scholar 

  13. Turkyilmazoglu M. MHD fluid flow and heat transfer due to a stretching rotating disk. Int J Therm Sci. 2012;51:195–201.

    Google Scholar 

  14. Turkyilmazoglu M. Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids. 2014;94:139–46.

    CAS  Google Scholar 

  15. Griffiths PT. Flow of a generalized Newtonian fluid due to a rotating disk. J Non-Newton Fluid Mech. 2015;221:9–17.

    CAS  Google Scholar 

  16. Doh DH, Muthtamilselvan M. Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int J Mech Sci. 2017;130:350.

    Google Scholar 

  17. Tabassum M, Mustafa M. A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk. Int J Heat Mass Transf. 2018;123:979–87.

    Google Scholar 

  18. Appelquist E, Schlatter P, Alfredsson PH, Lingwood RJ. Turbulence in the rotating-disk boundary layer investigated through direct numerical simulations. Eur J Mech-B/Fluids. 2018;70:6–18.

    Google Scholar 

  19. Pal D. Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation. Comput Math Appl. 2013;66:1161–80.

    Google Scholar 

  20. Zhang C, Zheng L, Zhang X, Chen G. MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl Math Model. 2015;39:165–81.

    Google Scholar 

  21. Hayat T, Shafique M, Tanveer A, Alsaedi A. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating. J Magn Magn Mater. 2016;407:51–9.

    CAS  Google Scholar 

  22. Sheikholeslami M. Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42(31):19611–21.

    CAS  Google Scholar 

  23. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  24. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    CAS  Google Scholar 

  25. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    CAS  Google Scholar 

  26. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mole Liq. 2018;266:495–503.

    CAS  Google Scholar 

  27. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    CAS  Google Scholar 

  28. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2018;344:306–18.

    Google Scholar 

  29. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    CAS  Google Scholar 

  30. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    CAS  Google Scholar 

  31. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiw Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2018;137:1290–300.

    Google Scholar 

  33. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2018;136:1233–40.

    Google Scholar 

  34. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    CAS  Google Scholar 

  35. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    CAS  Google Scholar 

  36. Max X, Sheikholeslami M, Jafaryar M, Shafee A, Nguyen-Thoi T. Li Z (2018) Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J Clean Prod. 2018;118888:

  37. Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2019;135(3):1629–41.

    CAS  Google Scholar 

  38. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135(3):1643–54.

    CAS  Google Scholar 

  39. Xu Y, Sun X, Shen R, Wang Z, Wang Q. Thermal behavior and smoke characteristics of glass/epoxy laminate and its foam core sandwich composite. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09095-7.

    Article  Google Scholar 

  40. Acharya N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09111-w.

    Article  Google Scholar 

  41. Wang X, Zhang D. Thermal evolution monitoring of a chemical reactor wall based on inverse analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09119-2.

    Article  Google Scholar 

  42. Merkin JH. A model for isothermal homogeneous-heterogeneous reactions in boundary-layer flow. Math Comput Model. 1996;24:125–36.

    Google Scholar 

  43. Krishnamurthy MR, Prasannakumar BC, Gireesha BJ, Gorla RSR. Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng Sci Tech Int J. 2016;19:53–61.

    Google Scholar 

  44. Hayat T, Muhammad T, Shehzad SA, Alsaedi A, Al-Solamy F. Radiative three-dimensional flow with chemical reaction. Int J Chem React Eng. 2016;14:79–91.

    CAS  Google Scholar 

  45. Muhaimin I, Kandasamy R, Hashim I. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction. Nucl Eng Des. 2010;9:240–933.

    Google Scholar 

  46. Singh G, Chamkha AJ. Dual solutions for second-order slip flow and heat transfer on a vertical permeable shrinking sheet. Ain Shams Eng J. 2013;4:911–7.

    Google Scholar 

  47. Ahmed J, Khan M, Ahmad L. Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk. Phys Lett A. 2019;383:1300–5.

    CAS  Google Scholar 

  48. Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018;30(6):063605.

    Google Scholar 

Download references

Acknowledgements

This work has the financial supports from Higher Education Commission (HEC) of Pakistan under the Project Number: 6210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ahmed, J. & Ali, W. Thermal analysis for radiative flow of magnetized Maxwell fluid over a vertically moving rotating disk. J Therm Anal Calorim 143, 4081–4094 (2021). https://doi.org/10.1007/s10973-020-09322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09322-6

Keywords

Navigation